Skip to main content
Erschienen in: International Journal of Computer Vision 3/2014

01.09.2014

Graph Matching by Simplified Convex-Concave Relaxation Procedure

verfasst von: Zhi-Yong Liu, Hong Qiao, Xu Yang, Steven C. H. Hoi

Erschienen in: International Journal of Computer Vision | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The convex and concave relaxation procedure (CCRP) was recently proposed and exhibited state-of-the-art performance on the graph matching problem. However, CCRP involves explicitly both convex and concave relaxations which typically are difficult to find, and thus greatly limit its practical applications. In this paper we propose a simplified CCRP scheme, which can be proved to realize exactly CCRP, but with a much simpler formulation without needing the concave relaxation in an explicit way, thus significantly simplifying the process of developing CCRP algorithms. The simplified CCRP can be generally applied to any optimizations over the partial permutation matrix, as long as the convex relaxation can be found. Based on two convex relaxations, we obtain two graph matching algorithms defined on adjacency matrix and affinity matrix, respectively. Extensive experimental results witness the simplicity as well as state-of-the-art performance of the two simplified CCRP graph matching algorithms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The convex relaxation (7) is derived by adding some dummy nodes into the smaller graph to obtain an equal-sized matching problem, such that \(\mathbf {X}\) is constrained as a permutation instead of a partial permutation matrix. Such an expansion is appropriate in case \(\mathbf {K}\) is constructed following (4), because it is straightforward to check that adding dummy nodes will not change the problem. However, if we define the partial matching based on objective function (1) by similarly adding some dummy nodes such that the convex relaxation (5) still holds, it can be shown that it in general changes the objective function.
 
2
For convenience sake and without loss of generality, we consider minimization problem here, since the maximization problem such as (2) can be transferred to be a minimization one by setting \(\mathbf {K}\leftarrow -\mathbf {K}\).
 
3
Actually, if \(\zeta \) is further increased from \(\eta \) to be \(1\), the resulted \(\mathbf {P}\in \Pi \) will retain since it remains to be a local minimum of the concave function \(F_{\zeta }(\mathbf {P})\).
 
4
Codes of SM and RRWM are available at http://​cv.​snu.​ac.​kr/​research/​~RRWM/​.
 
7
All of the codes of the ten algorithms are available at http://​www.​escience.​cn/​people/​zyliu/​SCCRP.​html.
 
Literatur
Zurück zum Zitat Blake, A., & Zisserman, A. (1987). Visual Reconstruction. Cambridge, MA, USA: MIT Press. Blake, A., & Zisserman, A. (1987). Visual Reconstruction. Cambridge, MA, USA: MIT Press.
Zurück zum Zitat Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. New York: Cambridge University Press.CrossRefMATH Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. New York: Cambridge University Press.CrossRefMATH
Zurück zum Zitat Cho, M., Alahari, K., Ponce, J., et al. (2013). Learning graphs to match. In: ICCV 2013-IEEE International Conference on Computer Vision. Cho, M., Alahari, K., Ponce, J., et al. (2013). Learning graphs to match. In: ICCV 2013-IEEE International Conference on Computer Vision.
Zurück zum Zitat Cho, M., Lee, J., & Lee, K. M. (2010). Reweighted random walks for graph matching. In: Computer Vision-ECCV 2010. Berlin: Springer. Cho, M., Lee, J., & Lee, K. M. (2010). Reweighted random walks for graph matching. In: Computer Vision-ECCV 2010. Berlin: Springer.
Zurück zum Zitat Cho, M., Lee, K.M. (2012). Progressive graph matching: Making a move of graphs via probabilistic voting. In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pp. 398–405. IEEE. Cho, M., Lee, K.M. (2012). Progressive graph matching: Making a move of graphs via probabilistic voting. In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pp. 398–405. IEEE.
Zurück zum Zitat Conte, D., Foggia, P., Sansone, C., & Vento, M. (2004). Thirty years of graph matching in pattern recognition. International Journal of Pattern Recognition and Artificial Intelligence, 18(3), 265–298.CrossRef Conte, D., Foggia, P., Sansone, C., & Vento, M. (2004). Thirty years of graph matching in pattern recognition. International Journal of Pattern Recognition and Artificial Intelligence, 18(3), 265–298.CrossRef
Zurück zum Zitat Cour, T., Srinivasan, P., & Shi, J. (2007). Balanced graph matching. Advances in Neural Information Processing Systems, 19, 313. Cour, T., Srinivasan, P., & Shi, J. (2007). Balanced graph matching. Advances in Neural Information Processing Systems, 19, 313.
Zurück zum Zitat Demirci, M. F., Shokoufandeh, A., Keselman, Y., Bretzner, L., & Dickinson, S. (2006). Object recognition as many-to-many feature matching. International Journal of Computer Vision, 69(2), 203–222.CrossRef Demirci, M. F., Shokoufandeh, A., Keselman, Y., Bretzner, L., & Dickinson, S. (2006). Object recognition as many-to-many feature matching. International Journal of Computer Vision, 69(2), 203–222.CrossRef
Zurück zum Zitat Duchenne, O., Joulin, A., Ponce, J. (2011). A graph-matching kernel for object categorization. IEEE International Conference on Computer Vision pp. 1792–1799. Duchenne, O., Joulin, A., Ponce, J. (2011). A graph-matching kernel for object categorization. IEEE International Conference on Computer Vision pp. 1792–1799.
Zurück zum Zitat Egozi, A., Keller, Y., & Guterman, H. (2013). A probabilistic approach to spectral graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1), 18–27.CrossRef Egozi, A., Keller, Y., & Guterman, H. (2013). A probabilistic approach to spectral graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1), 18–27.CrossRef
Zurück zum Zitat Fischler, M. A., & Elschlager, R. A. (1973). The representation and matching of pictorial structures. IEEE Transactions on Computers, C–22(1), 67–92.CrossRef Fischler, M. A., & Elschlager, R. A. (1973). The representation and matching of pictorial structures. IEEE Transactions on Computers, C–22(1), 67–92.CrossRef
Zurück zum Zitat Frank, M., & Wolfe, P. (1956). An algorithm for quadratic programming. Naval Research Logistics Quarterly, 3(1–2), 95–110.CrossRefMathSciNet Frank, M., & Wolfe, P. (1956). An algorithm for quadratic programming. Naval Research Logistics Quarterly, 3(1–2), 95–110.CrossRefMathSciNet
Zurück zum Zitat Geiger, D., & Yuille, A. (1991). A common framework for image segmentation. International Journal of Computer Vision, 6(3), 227–243.CrossRef Geiger, D., & Yuille, A. (1991). A common framework for image segmentation. International Journal of Computer Vision, 6(3), 227–243.CrossRef
Zurück zum Zitat Gold, S., & Rangarajan, A. (1996). A graduated assignment algorithm for graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(4), 377–388.CrossRef Gold, S., & Rangarajan, A. (1996). A graduated assignment algorithm for graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(4), 377–388.CrossRef
Zurück zum Zitat Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2(1–2), 83–97.CrossRefMathSciNet Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2(1–2), 83–97.CrossRefMathSciNet
Zurück zum Zitat Leordeanu, M., & Hebert, M. (2005). A spectral technique for correspondence problems using pairwise constraints. Tenth IEEE International Conference on Computer Vision, 2, 1482–1489.CrossRef Leordeanu, M., & Hebert, M. (2005). A spectral technique for correspondence problems using pairwise constraints. Tenth IEEE International Conference on Computer Vision, 2, 1482–1489.CrossRef
Zurück zum Zitat Leordeanu, M., Herbert, M., Sukthankar, R. (2009). An integer projected fixed point method for graph matching and map inference. Advances in Neural Information Processing Systems p. 1114C1122. Leordeanu, M., Herbert, M., Sukthankar, R. (2009). An integer projected fixed point method for graph matching and map inference. Advances in Neural Information Processing Systems p. 1114C1122.
Zurück zum Zitat Leordeanu, M., Sukthankar, R., & Hebert, M. (2012). Unsupervised learning for graph matching. International journal of computer vision, 96(1), 28–45.CrossRefMATHMathSciNet Leordeanu, M., Sukthankar, R., & Hebert, M. (2012). Unsupervised learning for graph matching. International journal of computer vision, 96(1), 28–45.CrossRefMATHMathSciNet
Zurück zum Zitat Liu, C. L., Yin, F., Wang, D. H., & Wang, Q. F. (2011). Casia online and offline chinese handwriting databases. In: Preceedings of the International Conference on Document Analysis and Recognition, 2011, 37–41. Liu, C. L., Yin, F., Wang, D. H., & Wang, Q. F. (2011). Casia online and offline chinese handwriting databases. In: Preceedings of the International Conference on Document Analysis and Recognition, 2011, 37–41.
Zurück zum Zitat Liu, Z. Y., & Qiao, H. (2012). A convex-concave relaxation procedure based subgraph matching algorithm. Journal of Machine Learning Research: W&CP, 25, 237–252. Liu, Z. Y., & Qiao, H. (2012). A convex-concave relaxation procedure based subgraph matching algorithm. Journal of Machine Learning Research: W&CP, 25, 237–252.
Zurück zum Zitat Liu, Z. Y., Qiao, H., & Xu, L. (2012). An extended path following algorithm for graph matching problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(7), 1451–1456.CrossRef Liu, Z. Y., Qiao, H., & Xu, L. (2012). An extended path following algorithm for graph matching problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(7), 1451–1456.CrossRef
Zurück zum Zitat Maciel, J., & Costeira, J. P. (2003). A global solution to sparse correspondence problems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(2), 187–199. Maciel, J., & Costeira, J. P. (2003). A global solution to sparse correspondence problems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(2), 187–199.
Zurück zum Zitat Philbin, G., Sivic, J., & Zisserman, A. (2011). Geometric latent dirichlet allocation on a matching graph for large-scale image datasets. International Journal of Computer Vision, 95(2), 138–153.CrossRefMATHMathSciNet Philbin, G., Sivic, J., & Zisserman, A. (2011). Geometric latent dirichlet allocation on a matching graph for large-scale image datasets. International Journal of Computer Vision, 95(2), 138–153.CrossRefMATHMathSciNet
Zurück zum Zitat Ravikumar, P., Lakerty, J. (2006). Quadratic programming relaxations for metric labeling and markov random field map estimation. International Conference on Machine Learning. Ravikumar, P., Lakerty, J. (2006). Quadratic programming relaxations for metric labeling and markov random field map estimation. International Conference on Machine Learning.
Zurück zum Zitat Rose, K. (1998). Deterministic annealing for clustering, compression, classification, regression, and related optimization problems. Proceedings of the IEEE, 86(11), 2210–2239.CrossRef Rose, K. (1998). Deterministic annealing for clustering, compression, classification, regression, and related optimization problems. Proceedings of the IEEE, 86(11), 2210–2239.CrossRef
Zurück zum Zitat Suh, Y., Cho, M., & Lee, K. M. (2012). Graph matching via sequential monte carlo. In: Computer Vision-ECCV 2012. Berlin: Springer. Suh, Y., Cho, M., & Lee, K. M. (2012). Graph matching via sequential monte carlo. In: Computer Vision-ECCV 2012. Berlin: Springer.
Zurück zum Zitat Tian, Y., Yan, J., Zhang, H., Zhang, Y., Yang, X., & Zha, H. (2012). On the convergence of graph matching: graduated assignment revisited. In: Computer Vision-ECCV 2012. Berlin: Springer. Tian, Y., Yan, J., Zhang, H., Zhang, Y., Yang, X., & Zha, H. (2012). On the convergence of graph matching: graduated assignment revisited. In: Computer Vision-ECCV 2012. Berlin: Springer.
Zurück zum Zitat Torresani, L., Kolmogorov, V., Rother, C. (2008). Feature correspondence via graph matching: Models and global optimization. In D. Forsyth, P. Torr, A. Ziseerman (eds.), ECCV 2008, Part II, LNCS 5303, (pp. 596–609). Torresani, L., Kolmogorov, V., Rother, C. (2008). Feature correspondence via graph matching: Models and global optimization. In D. Forsyth, P. Torr, A. Ziseerman (eds.), ECCV 2008, Part II, LNCS 5303, (pp. 596–609).
Zurück zum Zitat Umeyama, S. (1988). An eigendecomposition approach to weighted graph matching problems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(5), 695–703.CrossRefMATH Umeyama, S. (1988). An eigendecomposition approach to weighted graph matching problems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(5), 695–703.CrossRefMATH
Zurück zum Zitat Zaslavskiy, M., Bach, F., & Vert, J. P. (2009). A path following algorithm for the graph matching problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(12), 2227–2242.CrossRef Zaslavskiy, M., Bach, F., & Vert, J. P. (2009). A path following algorithm for the graph matching problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(12), 2227–2242.CrossRef
Zurück zum Zitat Zhou, F., De la Torre, F. (2012). Factorized graph matching. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 127–134. Zhou, F., De la Torre, F. (2012). Factorized graph matching. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 127–134.
Zurück zum Zitat Zhou, F., De la Torre, F. (2013). Deformable graph matching. In: Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pp. 2922–2929. IEEE. Zhou, F., De la Torre, F. (2013). Deformable graph matching. In: Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pp. 2922–2929. IEEE.
Metadaten
Titel
Graph Matching by Simplified Convex-Concave Relaxation Procedure
verfasst von
Zhi-Yong Liu
Hong Qiao
Xu Yang
Steven C. H. Hoi
Publikationsdatum
01.09.2014
Verlag
Springer US
Erschienen in
International Journal of Computer Vision / Ausgabe 3/2014
Print ISSN: 0920-5691
Elektronische ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-014-0707-7

Weitere Artikel der Ausgabe 3/2014

International Journal of Computer Vision 3/2014 Zur Ausgabe

Premium Partner