Skip to main content
Erschienen in: International Journal of Computer Vision 3/2015

01.02.2015

Confidence Sets for Fine-Grained Categorization and Plant Species Identification

verfasst von: Asma Rejeb Sfar, Nozha Boujemaa, Donald Geman

Erschienen in: International Journal of Computer Vision | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a new hierarchical strategy for fine-grained categorization. Standard, fully automated systems report a single estimate of the category, or perhaps a ranked list, but have non-neglible error rates for most realistic scenarios, which limits their utility. Instead, we propose a semi-automated system which outputs a it confidence set (CS)—a variable-length list of categories which contains the true one with high probability (e.g., a 99 % CS). Performance is then measured by the expected size of the CS, reflecting the effort required for final identification by the user. The implementation is based on a hierarchical clustering of the full set of categories. This tree of subsets provides a graded family of candidate CS’s containing visually similar categories. There is also a learned discriminant score for deciding between each subset and all others combined. Selection of the CS is based on the joint score likelihood under a Bayesian network model. We apply this method to determining the species of a plant from an image of a leaf against either a uniform or natural background. Extensive experiments are reported. We obtain superior results relative to existing methods for point estimates for scanned leaves and report the first useful results for natural images at the expense of asking the user to initialize the process by identifying specific landmarks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Angelova, A. & Zhu, S. (2013). Efficient object detection and segmentation for fine-grained recognition. In: CVPR. Angelova, A. & Zhu, S. (2013). Efficient object detection and segmentation for fine-grained recognition. In: CVPR.
Zurück zum Zitat Belhumeur, P.N., Chen, D., Feiner, S., Jacobs, D.W., Kress, W.J., Ling, H., Lopez, I.C., Ramamoorthi, R., Sheorey, S., White, S., Zhang, L. (2008). Searching the world’s herbaria: A system for visual identification of plant species. In: ECCV (4), pp 116–129. Belhumeur, P.N., Chen, D., Feiner, S., Jacobs, D.W., Kress, W.J., Ling, H., Lopez, I.C., Ramamoorthi, R., Sheorey, S., White, S., Zhang, L. (2008). Searching the world’s herbaria: A system for visual identification of plant species. In: ECCV (4), pp 116–129.
Zurück zum Zitat Bourdev, L.D. & Malik, J. (2009). Poselets: Body part detectors trained using 3d human pose annotations. In: ICCV, pp 1365–1372. Bourdev, L.D. & Malik, J. (2009). Poselets: Body part detectors trained using 3d human pose annotations. In: ICCV, pp 1365–1372.
Zurück zum Zitat Branson, S., Wah, C., Schroff, F., Babenko, B., Welinder, P., Perona, P. & Belongie, S. (2010). Visual recognition with humans in the loop. In: ECCV (4), pp 438–451. Branson, S., Wah, C., Schroff, F., Babenko, B., Welinder, P., Perona, P. & Belongie, S. (2010). Visual recognition with humans in the loop. In: ECCV (4), pp 438–451.
Zurück zum Zitat Burl, M.C. & Perona, P. (1998). Using hierarchical shape models to spot keywords in cursive handwriting data. In: CVPR, pp 535–540. Burl, M.C. & Perona, P. (1998). Using hierarchical shape models to spot keywords in cursive handwriting data. In: CVPR, pp 535–540.
Zurück zum Zitat Caballero, C. & Aranda, M.C. (2010). Plant species identification using leaf image retrieval. In: CIVR, pp 327–334. Caballero, C. & Aranda, M.C. (2010). Plant species identification using leaf image retrieval. In: CIVR, pp 327–334.
Zurück zum Zitat Casanova, D., Florindo, J.B. & Bruno, O.M. (2011). Ifsc/usp at imageclef 2011: Plant identication task. In: CLEF (Notebook Papers/Labs/Workshop). Casanova, D., Florindo, J.B. & Bruno, O.M. (2011). Ifsc/usp at imageclef 2011: Plant identication task. In: CLEF (Notebook Papers/Labs/Workshop).
Zurück zum Zitat Casanova, D., Florindo, J.B., Gonçalves, W.N. & Bruno, O.M. (2012) Ifsc/usp at imageclef 2012: Plant identification task. In: CLEF (Online Working Notes/Labs/Workshop). Casanova, D., Florindo, J.B., Gonçalves, W.N. & Bruno, O.M. (2012) Ifsc/usp at imageclef 2012: Plant identification task. In: CLEF (Online Working Notes/Labs/Workshop).
Zurück zum Zitat Cook, N. R. (2005). Confidence Intervals and Sets. : John Wiley and Sons Ltd. Cook, N. R. (2005). Confidence Intervals and Sets. : John Wiley and Sons Ltd.
Zurück zum Zitat Cope, J. S., Corney, D. P. A., Clark, J. Y., Remagnino, P., & Wilkin, P. (2012). Plant species identification using digital morphometrics: A review. Expert Syst Appl, 39(8), 7562–7573.CrossRef Cope, J. S., Corney, D. P. A., Clark, J. Y., Remagnino, P., & Wilkin, P. (2012). Plant species identification using digital morphometrics: A review. Expert Syst Appl, 39(8), 7562–7573.CrossRef
Zurück zum Zitat del Coz, J. J., Díez, J., & Bahamonde, A. (2009). Learning nondeterministic classifiers. Journal of Machine Learning Research, 10, 2273–2293.MATH del Coz, J. J., Díez, J., & Bahamonde, A. (2009). Learning nondeterministic classifiers. Journal of Machine Learning Research, 10, 2273–2293.MATH
Zurück zum Zitat Deng, J., Berg, A.C., Li, K., Li, F.F. (2010). What does classifying more than 10, 000 image categories tell us? In: ECCV (5), pp 71–84. Deng, J., Berg, A.C., Li, K., Li, F.F. (2010). What does classifying more than 10, 000 image categories tell us? In: ECCV (5), pp 71–84.
Zurück zum Zitat Deng, J., Krause, J., Berg, A.C. & Li, F.F. (2012). Hedging your bets: Optimizing accuracy-specificity trade-offs in large scale visual recognition. In: CVPR, pp 3450–3457. Deng, J., Krause, J., Berg, A.C. & Li, F.F. (2012). Hedging your bets: Optimizing accuracy-specificity trade-offs in large scale visual recognition. In: CVPR, pp 3450–3457.
Zurück zum Zitat Deng, J., Krause, J. & Li, F.F. (2013). Fine-grained crowdsourcing for fine-grained recognition. In: CVPR, pp 580–587. Deng, J., Krause, J. & Li, F.F. (2013). Fine-grained crowdsourcing for fine-grained recognition. In: CVPR, pp 580–587.
Zurück zum Zitat Du, J.X., Huang, D., Wang, X. & Gu, X. (2005). Shape recognition based on radial basis probabilistic neural network and application to plant species identification. In: ISNN (2), pp 281–285. Du, J.X., Huang, D., Wang, X. & Gu, X. (2005). Shape recognition based on radial basis probabilistic neural network and application to plant species identification. In: ISNN (2), pp 281–285.
Zurück zum Zitat Duan, K., Parikh, D., Crandall, D.J. & Grauman, K. (2012). Discovering localized attributes for fine-grained recognition. In: CVPR, pp 3474–3481. Duan, K., Parikh, D., Crandall, D.J. & Grauman, K. (2012). Discovering localized attributes for fine-grained recognition. In: CVPR, pp 3474–3481.
Zurück zum Zitat El-Yaniv, R., & Wiener, Y. (2010). On the foundations of noise-free selective classification. Journal of Machine Learning Research, 11, 1605–1641.MATHMathSciNet El-Yaniv, R., & Wiener, Y. (2010). On the foundations of noise-free selective classification. Journal of Machine Learning Research, 11, 1605–1641.MATHMathSciNet
Zurück zum Zitat Ellis, B. (2009). Manual of leaf architecture. Cornell paperbacks, Published in association with the New York Botanical Garden. Ellis, B. (2009). Manual of leaf architecture. Cornell paperbacks, Published in association with the New York Botanical Garden.
Zurück zum Zitat Elpel, T. (2004). Botany in a Day: The Patterns Method of Plant Identification. Thomas J. Elpel’s herbal field guide to plant families of North America. : Hops Press. Elpel, T. (2004). Botany in a Day: The Patterns Method of Plant Identification. Thomas J. Elpel’s herbal field guide to plant families of North America. : Hops Press.
Zurück zum Zitat Fan, X. & Geman, D. (2004). Hierarchical object indexing and sequential learning. In: ICPR (3), pp 65–68. Fan, X. & Geman, D. (2004). Hierarchical object indexing and sequential learning. In: ICPR (3), pp 65–68.
Zurück zum Zitat Farrell, R., Oza, O., Zhang, N., Morariu, V.I., Darrell, T., Davis, L.S. (2011a). Birdlets: Subordinate categorization using volumetric primitives and pose-normalized appearance. In: ICCV, pp 161–168. Farrell, R., Oza, O., Zhang, N., Morariu, V.I., Darrell, T., Davis, L.S. (2011a). Birdlets: Subordinate categorization using volumetric primitives and pose-normalized appearance. In: ICCV, pp 161–168.
Zurück zum Zitat Farrell, R., Oza, O., Zhang, Z., Morariu, V., Darrell, T. & Davis, L. (2011b). Birdlets: Subordinate categorization using volumetric primitives and pose-normalized appearance. In: ICCV, pp 161–168. Farrell, R., Oza, O., Zhang, Z., Morariu, V., Darrell, T. & Davis, L. (2011b). Birdlets: Subordinate categorization using volumetric primitives and pose-normalized appearance. In: ICCV, pp 161–168.
Zurück zum Zitat Felzenszwalb, P.F. & Schwartz, J.D. (2007). Hierarchical matching of deformable shapes. In: CVPR. Felzenszwalb, P.F. & Schwartz, J.D. (2007). Hierarchical matching of deformable shapes. In: CVPR.
Zurück zum Zitat Ferecatu, M. (2005). Image retrieval with active relevance feedback using both visual and keyword-based descriptors. PhD thesis, Université de Versailles SaintQuentin-en-Yvelines. Ferecatu, M. (2005). Image retrieval with active relevance feedback using both visual and keyword-based descriptors. PhD thesis, Université de Versailles SaintQuentin-en-Yvelines.
Zurück zum Zitat Fergus, R., Bernal, H., Weiss, Y. & Torralba, A. (2010). Semantic label sharing for learning with many categories. In: ECCV (1), pp 762–775. Fergus, R., Bernal, H., Weiss, Y. & Torralba, A. (2010). Semantic label sharing for learning with many categories. In: ECCV (1), pp 762–775.
Zurück zum Zitat Fernández, A., & Gómez, S. (2008). Solving non-uniqueness in agglomerative hierarchical clustering using multidendrograms. J Classification, 25(1), 43–65.CrossRefMATHMathSciNet Fernández, A., & Gómez, S. (2008). Solving non-uniqueness in agglomerative hierarchical clustering using multidendrograms. J Classification, 25(1), 43–65.CrossRefMATHMathSciNet
Zurück zum Zitat Goëau, H., Bonnet, P., Joly, A., Boujemaa, N., Barthelemy, D., Molino, J.F., Birnbaum, P., Mouysset, E. & Picard, M. (2011). The clef 2011 plant images classification task. In: CLEF (Notebook Papers/Labs/Workshop). Goëau, H., Bonnet, P., Joly, A., Boujemaa, N., Barthelemy, D., Molino, J.F., Birnbaum, P., Mouysset, E. & Picard, M. (2011). The clef 2011 plant images classification task. In: CLEF (Notebook Papers/Labs/Workshop).
Zurück zum Zitat Goëau, H., Bonnet, P., Joly, A., Yahiaoui, I., Barthelemy, D., Boujemaa, N. & Molino, J.F. (2012). The imageclef 2012 plant identification task. In: CLEF (Online Working Notes/Labs/Workshop). Goëau, H., Bonnet, P., Joly, A., Yahiaoui, I., Barthelemy, D., Boujemaa, N. & Molino, J.F. (2012). The imageclef 2012 plant identification task. In: CLEF (Online Working Notes/Labs/Workshop).
Zurück zum Zitat Grall-Maës, E., & Beauseroy, P. (2009). Optimal decision rule with class-selective rejection and performance constraints. IEEE Trans Pattern Anal Mach Intell, 31(11), 2073–2082.CrossRef Grall-Maës, E., & Beauseroy, P. (2009). Optimal decision rule with class-selective rejection and performance constraints. IEEE Trans Pattern Anal Mach Intell, 31(11), 2073–2082.CrossRef
Zurück zum Zitat Gu, X., Du, J.X. & Wang, X. (2005). Leaf recognition based on the combination of wavelet transform and gaussian interpolation. In: ICIC (1), pp 253–262. Gu, X., Du, J.X. & Wang, X. (2005). Leaf recognition based on the combination of wavelet transform and gaussian interpolation. In: ICIC (1), pp 253–262.
Zurück zum Zitat Gupta, S. S. (1965). On some multiple decision (selection and ranking) rules. Technometrics, 7(2), 225–245.CrossRefMATH Gupta, S. S. (1965). On some multiple decision (selection and ranking) rules. Technometrics, 7(2), 225–245.CrossRefMATH
Zurück zum Zitat Ha, T. M. (1997). The optimum class-selective rejection rule. IEEE Trans Pattern Anal Mach Intell, 19(6), 608–615.CrossRef Ha, T. M. (1997). The optimum class-selective rejection rule. IEEE Trans Pattern Anal Mach Intell, 19(6), 608–615.CrossRef
Zurück zum Zitat Horiuchi, T. (1998). Class-selective rejection rule to minimize the maximum distance between selected classes. Pattern Recognition, 31(10), 1579–1588.CrossRef Horiuchi, T. (1998). Class-selective rejection rule to minimize the maximum distance between selected classes. Pattern Recognition, 31(10), 1579–1588.CrossRef
Zurück zum Zitat Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM Comput Surv, 31(3), 264–323.CrossRef Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM Comput Surv, 31(3), 264–323.CrossRef
Zurück zum Zitat Jr, C. N. S., & Freitas, A. A. (2011). A survey of hierarchical classification across different application domains. Data Min Knowl Discov, 22(1–2), 31–72.MathSciNet Jr, C. N. S., & Freitas, A. A. (2011). A survey of hierarchical classification across different application domains. Data Min Knowl Discov, 22(1–2), 31–72.MathSciNet
Zurück zum Zitat Kumar, N., Belhumeur, P.N., Biswas, A., Jacobs, D.W., Kress, W.J., Lopez, I.C. & Soares, J.V.B. (2012). Leafsnap: A computer vision system for automatic plant species identification. In: ECCV (2), pp 502–516. Kumar, N., Belhumeur, P.N., Biswas, A., Jacobs, D.W., Kress, W.J., Lopez, I.C. & Soares, J.V.B. (2012). Leafsnap: A computer vision system for automatic plant species identification. In: ECCV (2), pp 502–516.
Zurück zum Zitat Larios, N., Deng, H., Zhang, W., Sarpola, M., Yuen, J., Paasch, R., et al. (2008). Automated insect identification through concatenated histograms of local appearance features: feature vector generation and region detection for deformable objects. Mach Vis Appl, 19(2), 105–123.CrossRef Larios, N., Deng, H., Zhang, W., Sarpola, M., Yuen, J., Paasch, R., et al. (2008). Automated insect identification through concatenated histograms of local appearance features: feature vector generation and region detection for deformable objects. Mach Vis Appl, 19(2), 105–123.CrossRef
Zurück zum Zitat Lazebnik, S., Schmid, C. & Ponce, J. (2006). Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR (2), pp 2169–2178. Lazebnik, S., Schmid, C. & Ponce, J. (2006). Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR (2), pp 2169–2178.
Zurück zum Zitat Li, F.F. & Perona, P. (2005). A bayesian hierarchical model for learning natural scene categories. In: CVPR (2), pp 524–531. Li, F.F. & Perona, P. (2005). A bayesian hierarchical model for learning natural scene categories. In: CVPR (2), pp 524–531.
Zurück zum Zitat Ling, H., & Jacobs, D. W. (2007). Shape classification using the inner-distance. IEEE Trans Pattern Anal Mach Intell, 29(2), 286–299.CrossRef Ling, H., & Jacobs, D. W. (2007). Shape classification using the inner-distance. IEEE Trans Pattern Anal Mach Intell, 29(2), 286–299.CrossRef
Zurück zum Zitat Liu, J., Kanazawa, A., Jacobs, D.W., Belhumeur, P.N. (2012). Dog breed classification using part localization. In: ECCV (1), pp 172–185. Liu, J., Kanazawa, A., Jacobs, D.W., Belhumeur, P.N. (2012). Dog breed classification using part localization. In: ECCV (1), pp 172–185.
Zurück zum Zitat Manh, A. G., Rabatel, G., Assemat, L., & Aldon, M. J. (2001). Weed leaf image segmentation by deformable templates. Journal of agricultural engineering research, 80(2), 139–146.CrossRef Manh, A. G., Rabatel, G., Assemat, L., & Aldon, M. J. (2001). Weed leaf image segmentation by deformable templates. Journal of agricultural engineering research, 80(2), 139–146.CrossRef
Zurück zum Zitat Martínez-Muñoz, G., Delgado, N.L., Mortensen, E.N., Zhang, W., Yamamuro, A., Paasch, R., Payet, N., Lytle, D.A., Shapiro, L.G., Todorovic, S., Moldenke, A. & Dietterich, T.G. (2009). Dictionary-free categorization of very similar objects via stacked evidence trees. In: CVPR, pp 549–556. Martínez-Muñoz, G., Delgado, N.L., Mortensen, E.N., Zhang, W., Yamamuro, A., Paasch, R., Payet, N., Lytle, D.A., Shapiro, L.G., Todorovic, S., Moldenke, A. & Dietterich, T.G. (2009). Dictionary-free categorization of very similar objects via stacked evidence trees. In: CVPR, pp 549–556.
Zurück zum Zitat Mouine, S., Yahiaoui, I., Verroust-Blondet, A. (2013). A shape-based approach for leaf classification using multiscaletriangular representation. In: ICMR, pp 127–134. Mouine, S., Yahiaoui, I., Verroust-Blondet, A. (2013). A shape-based approach for leaf classification using multiscaletriangular representation. In: ICMR, pp 127–134.
Zurück zum Zitat Neyman, J. (1937). Outline of a theory of statistical estimation based on the classical theory of probability. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences 236(767):pp. 333–380, http://www.jstor.org/stable/91337 Neyman, J. (1937). Outline of a theory of statistical estimation based on the classical theory of probability. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences 236(767):pp. 333–380, http://​www.​jstor.​org/​stable/​91337
Zurück zum Zitat Nilsback, M.E. & Zisserman, A. (2006). A visual vocabulary for flower classification. In: CVPR (2), pp 1447–1454. Nilsback, M.E. & Zisserman, A. (2006). A visual vocabulary for flower classification. In: CVPR (2), pp 1447–1454.
Zurück zum Zitat Otsu, N. (1979). A Threshold Selection Method from Gray-level Histograms. Man and Cybernetics: IEEE Transactions on Systems. Otsu, N. (1979). A Threshold Selection Method from Gray-level Histograms. Man and Cybernetics: IEEE Transactions on Systems.
Zurück zum Zitat Rejeb Sfar, A., Boujemaa, N. & Geman, D. (2013a). Identification of plants from multiple images and botanical idkeys. In: ICMR, pp 191–198. Rejeb Sfar, A., Boujemaa, N. & Geman, D. (2013a). Identification of plants from multiple images and botanical idkeys. In: ICMR, pp 191–198.
Zurück zum Zitat Rejeb Sfar, A., Boujemaa, N., Geman, D. (2013b). Vantage feature frames for fine-grained categorization. In: CVPR, pp 835–842. Rejeb Sfar, A., Boujemaa, N., Geman, D. (2013b). Vantage feature frames for fine-grained categorization. In: CVPR, pp 835–842.
Zurück zum Zitat Söderkvist, O. (2001). Computer vision classification of leaves from swedish trees. Master’s thesis, Linköping University, SE-581 83 Linköping, Sweden, liTH-ISY-EX-3132. Söderkvist, O. (2001). Computer vision classification of leaves from swedish trees. Master’s thesis, Linköping University, SE-581 83 Linköping, Sweden, liTH-ISY-EX-3132.
Zurück zum Zitat Teng, C.H., Kuo, Y.T. & Chen, Y.S. (2009). Leaf segmentation, its 3d position estimation and leaf classification from a few images with very close viewpoints. In: ICIAR, pp 937–946. Teng, C.H., Kuo, Y.T. & Chen, Y.S. (2009). Leaf segmentation, its 3d position estimation and leaf classification from a few images with very close viewpoints. In: ICIAR, pp 937–946.
Zurück zum Zitat Tversky, B. & Hemenway, K. (1984). Objects, parts, and categories. Experimental Psychology: General. Tversky, B. & Hemenway, K. (1984). Objects, parts, and categories. Experimental Psychology: General.
Zurück zum Zitat Wah, C., Branson, S., Perona, P. & Belongie, S. (2011). Multiclass recognition and part localization with humans in the loop. In: ICCV, pp 2524–2531. Wah, C., Branson, S., Perona, P. & Belongie, S. (2011). Multiclass recognition and part localization with humans in the loop. In: ICCV, pp 2524–2531.
Zurück zum Zitat Wang, J., Yang, J., Yu, K., Lv, F., Huang, T. & Gong, Y. (2010). Locality-constrained linear coding for image classification. In: CVPR, pp 3360–3367. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T. & Gong, Y. (2010). Locality-constrained linear coding for image classification. In: CVPR, pp 3360–3367.
Zurück zum Zitat Wang, X., Du, J.X. & Zhang, G.J. (2005). Recognition of leaf images based on shape features using a hypersphere classifier. In: ICIC (1), pp 87–96. Wang, X., Du, J.X. & Zhang, G.J. (2005). Recognition of leaf images based on shape features using a hypersphere classifier. In: ICIC (1), pp 87–96.
Zurück zum Zitat Wang, X. F., Huang, D. S., Du, J. X., Xu, H., & Heutte, L. (2008). Classification of plant leaf images with complicated background. Applied Mathematics and Computation, 205(2), 916–926.CrossRefMATHMathSciNet Wang, X. F., Huang, D. S., Du, J. X., Xu, H., & Heutte, L. (2008). Classification of plant leaf images with complicated background. Applied Mathematics and Computation, 205(2), 916–926.CrossRefMATHMathSciNet
Zurück zum Zitat Ward, J, Jr. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244.CrossRefMathSciNet Ward, J, Jr. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244.CrossRefMathSciNet
Zurück zum Zitat Wu, J. & Rehg, J.M. (2008). Where am i: Place instance and category recognition using spatial pact. In: CVPR. Wu, J. & Rehg, J.M. (2008). Where am i: Place instance and category recognition using spatial pact. In: CVPR.
Zurück zum Zitat Wu, S.G., Bao, F.S., Xu, E.Y., Wang, Y., Chang, Y.F. & Xiang, Q.L. (2007). A leaf recognition algorithm for plant classification using probabilistic neural network. CoRR abs/0707.4289. Wu, S.G., Bao, F.S., Xu, E.Y., Wang, Y., Chang, Y.F. & Xiang, Q.L. (2007). A leaf recognition algorithm for plant classification using probabilistic neural network. CoRR abs/0707.4289.
Zurück zum Zitat Yang, S., Bo, L., Wang, J. & Shapiro, L.G. (2012). Unsupervised template learning for fine-grained object recognition. In: NIPS, pp 3131–3139. Yang, S., Bo, L., Wang, J. & Shapiro, L.G. (2012). Unsupervised template learning for fine-grained object recognition. In: NIPS, pp 3131–3139.
Zurück zum Zitat Yao, B., Bradski, G.R. & Li, F.F. (2012). A codebook-free and annotation-free approach for fine-grained image categorization. In: CVPR, pp 3466–3473. Yao, B., Bradski, G.R. & Li, F.F. (2012). A codebook-free and annotation-free approach for fine-grained image categorization. In: CVPR, pp 3466–3473.
Zurück zum Zitat Yuan, M., & Wegkamp, M. H. (2010). Classification methods with reject option based on convex risk minimization. Journal of Machine Learning Research, 11, 111–130.MATHMathSciNet Yuan, M., & Wegkamp, M. H. (2010). Classification methods with reject option based on convex risk minimization. Journal of Machine Learning Research, 11, 111–130.MATHMathSciNet
Zurück zum Zitat Zhang, N., Farrell, R. & Darrell, T. (2012). Pose pooling kernels for sub-category recognition. In: CVPR, pp 3665–3672. Zhang, N., Farrell, R. & Darrell, T. (2012). Pose pooling kernels for sub-category recognition. In: CVPR, pp 3665–3672.
Zurück zum Zitat Zweig, A. & Weinshall, D. (2007). Exploiting object hierarchy: Combining models from different category levels. In: ICCV, pp 1–8. Zweig, A. & Weinshall, D. (2007). Exploiting object hierarchy: Combining models from different category levels. In: ICCV, pp 1–8.
Metadaten
Titel
Confidence Sets for Fine-Grained Categorization and Plant Species Identification
verfasst von
Asma Rejeb Sfar
Nozha Boujemaa
Donald Geman
Publikationsdatum
01.02.2015
Verlag
Springer US
Erschienen in
International Journal of Computer Vision / Ausgabe 3/2015
Print ISSN: 0920-5691
Elektronische ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-014-0743-3

Weitere Artikel der Ausgabe 3/2015

International Journal of Computer Vision 3/2015 Zur Ausgabe

Premium Partner