Skip to main content
Erschienen in: Water Resources Management 5/2012

01.03.2012

Integration of Optimal Dynamic Control and Neural Network for Groundwater Quality Management

verfasst von: Liang-Cheng Chang, Hone-Jay Chu, Chin-Tsai Hsiao

Erschienen in: Water Resources Management | Ausgabe 5/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study integrates an artificial neural network (ANN) and constrained differential dynamic programming (CDDP) to search for optimal solutions to a nonlinear time-varying groundwater remediation-planning problem. The proposed model (ANN-CDDP) determines optimal dynamic pumping schemes to minimize operating costs and meet water quality requirements. The model uses two embedded ANNs, including groundwater flow and contaminant transport models, as transition functions to predict groundwater levels and contaminant concentrations under time-varying pumping. Results demonstrate that ANN-CDDP is a simplified management model that requires considerably less computation time to solve a fine mesh problem. For example, the ANN-CDDP computing time for a case involving 364 nodes is 1/26.5 that of the conventional optimization model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahlfeld DP, Sprong MP (1998) Presence of nonconvexity in groundwater concentration response functions. J Water Resour Plann Manag 124(1):8–14CrossRef Ahlfeld DP, Sprong MP (1998) Presence of nonconvexity in groundwater concentration response functions. J Water Resour Plann Manag 124(1):8–14CrossRef
Zurück zum Zitat Ahlfeld DP, Mulvey JM, Pinder GF, Wood EF (1988) Contaminated groundwater remediation design using simulation, optimization, and sensitivity theory, 1, Model development. Water Resour Res 24(5):431–441CrossRef Ahlfeld DP, Mulvey JM, Pinder GF, Wood EF (1988) Contaminated groundwater remediation design using simulation, optimization, and sensitivity theory, 1, Model development. Water Resour Res 24(5):431–441CrossRef
Zurück zum Zitat Basagaoglu H, Marino MA (1999) Joint management of surface and ground water supplies. Ground Water 37:214–222CrossRef Basagaoglu H, Marino MA (1999) Joint management of surface and ground water supplies. Ground Water 37:214–222CrossRef
Zurück zum Zitat Banerjee P, Singh VS, Chatttopadhyay K, Chandra PC, Singh B (2011) Artificial neural network model as a potential alternative for groundwater salinity forecasting. J Hydrol 398(3–4):212–220CrossRef Banerjee P, Singh VS, Chatttopadhyay K, Chandra PC, Singh B (2011) Artificial neural network model as a potential alternative for groundwater salinity forecasting. J Hydrol 398(3–4):212–220CrossRef
Zurück zum Zitat Becker D, Minsker B, Greenwald R, Zhang Y, Harre K, Yager K, Zheng C, Peralta R (2006) Reducing long-term remedial costs by transport modeling optimization. Ground Water 44(6):864–875CrossRef Becker D, Minsker B, Greenwald R, Zhang Y, Harre K, Yager K, Zheng C, Peralta R (2006) Reducing long-term remedial costs by transport modeling optimization. Ground Water 44(6):864–875CrossRef
Zurück zum Zitat Chang LC, Hsiao CT (2002) Dynamic optimal Groundwater Remediation including fixed and operation costs. Ground Water 40(5):481–490CrossRef Chang LC, Hsiao CT (2002) Dynamic optimal Groundwater Remediation including fixed and operation costs. Ground Water 40(5):481–490CrossRef
Zurück zum Zitat Chang LC, Shoemaker CA, Liu PL-F (1992) Optimal time varying pumping rates for groundwater remediation: application of a constrained optimal control algorithm. Water Resour Res 28(12):3157–3173CrossRef Chang LC, Shoemaker CA, Liu PL-F (1992) Optimal time varying pumping rates for groundwater remediation: application of a constrained optimal control algorithm. Water Resour Res 28(12):3157–3173CrossRef
Zurück zum Zitat Chang LC, Chu HJ, Hsiao CT (2007) Optimal planning of a dynamic pump-treat-inject groundwater remediation system. J Hydrol 342(3–4):295–304CrossRef Chang LC, Chu HJ, Hsiao CT (2007) Optimal planning of a dynamic pump-treat-inject groundwater remediation system. J Hydrol 342(3–4):295–304CrossRef
Zurück zum Zitat Chang LC, Chen YW, Yeh MS (2009) Optimizing system capacity expansion schedules for groundwater supply. Water Resour Res 45(W07407):10 Chang LC, Chen YW, Yeh MS (2009) Optimizing system capacity expansion schedules for groundwater supply. Water Resour Res 45(W07407):10
Zurück zum Zitat Chu HJ, Chang LC (2009a) Optimal control algorithm and neural network for dynamic groundwater management. Hydrolog Process 23(19):2765–2773CrossRef Chu HJ, Chang LC (2009a) Optimal control algorithm and neural network for dynamic groundwater management. Hydrolog Process 23(19):2765–2773CrossRef
Zurück zum Zitat Chu HJ, Chang LC (2009b) Application of the optimal control and fuzzy theory for dynamic groundwater remediation design. Water Resour Manag 23(4):647–660CrossRef Chu HJ, Chang LC (2009b) Application of the optimal control and fuzzy theory for dynamic groundwater remediation design. Water Resour Manag 23(4):647–660CrossRef
Zurück zum Zitat Chu HJ, Chang LC (2010) Optimizing capacity-expansion planning of groundwater supply system between cost and subsidence. ASCE’s J Hydrolog Eng 15(8):632–641CrossRef Chu HJ, Chang LC (2010) Optimizing capacity-expansion planning of groundwater supply system between cost and subsidence. ASCE’s J Hydrolog Eng 15(8):632–641CrossRef
Zurück zum Zitat Chu HJ, Hsiao CT, Chang LC (2005) Optimal remediation design in groundwater systems by intelligent techniques. Knowledge-Based Intelligent Information and Engineering Systems, Pt 2 Proceedings 3682:628–634CrossRef Chu HJ, Hsiao CT, Chang LC (2005) Optimal remediation design in groundwater systems by intelligent techniques. Knowledge-Based Intelligent Information and Engineering Systems, Pt 2 Proceedings 3682:628–634CrossRef
Zurück zum Zitat Coppola E (2000) Optimal pumping policy for a public supply wellfield using computational neural network with decision-making methodology. PhD thesis, Univ. of Arizona at Tucson, Ariz. Coppola E (2000) Optimal pumping policy for a public supply wellfield using computational neural network with decision-making methodology. PhD thesis, Univ. of Arizona at Tucson, Ariz.
Zurück zum Zitat Coppola E, Poulton M, Charles E, Dustman J, Szidarovszky F (2003a) Application of artificial neural networks to complex groundwater management problems. Nat Resour Res 12(4):303–320CrossRef Coppola E, Poulton M, Charles E, Dustman J, Szidarovszky F (2003a) Application of artificial neural networks to complex groundwater management problems. Nat Resour Res 12(4):303–320CrossRef
Zurück zum Zitat Coppola E, Szidarovszky F, Poulton M, Charles E (2003b) Artificial neural network approach for predicting transient water levels in a multilayered ground water system under variable state, pumping, and climate conditions. J Hydrolog Eng 8(6):348–359CrossRef Coppola E, Szidarovszky F, Poulton M, Charles E (2003b) Artificial neural network approach for predicting transient water levels in a multilayered ground water system under variable state, pumping, and climate conditions. J Hydrolog Eng 8(6):348–359CrossRef
Zurück zum Zitat Coppola EA, Szidarovszky F, Davis D et al (2007) Multiobjective analysis of a public wellfield using artificial neural networks. Ground Water 45(1):53–61CrossRef Coppola EA, Szidarovszky F, Davis D et al (2007) Multiobjective analysis of a public wellfield using artificial neural networks. Ground Water 45(1):53–61CrossRef
Zurück zum Zitat Culver TB, Shoemaker CA (1992) Dynamic optimal control for groundwater remediation with flexible management periods. Water Resour Res 28(3):629–641CrossRef Culver TB, Shoemaker CA (1992) Dynamic optimal control for groundwater remediation with flexible management periods. Water Resour Res 28(3):629–641CrossRef
Zurück zum Zitat Daliakopoulos I, Coulibaly P, Tsanis I (2005) Ground water level forecasting using artificial neural networks. J Hydrol 309(1–4):229–240CrossRef Daliakopoulos I, Coulibaly P, Tsanis I (2005) Ground water level forecasting using artificial neural networks. J Hydrol 309(1–4):229–240CrossRef
Zurück zum Zitat Dimopoulos Y, Bourret P, Lek S (1995) Use of some sensitivity criteria for choosing networks with good generalization ability. Neural Process Lett 2:1–4CrossRef Dimopoulos Y, Bourret P, Lek S (1995) Use of some sensitivity criteria for choosing networks with good generalization ability. Neural Process Lett 2:1–4CrossRef
Zurück zum Zitat Feng SY, Kang SZ, Huo ZL et al (2008) Neural networks to simulate regional ground water levels affected by human activities. Ground Water 46(1):80–90 Feng SY, Kang SZ, Huo ZL et al (2008) Neural networks to simulate regional ground water levels affected by human activities. Ground Water 46(1):80–90
Zurück zum Zitat Feuillette S, Bousquet F, Le Goulven P (2003) SINUSE: a multi-agent model to negotiate water demand management on a free access water table. Environ Model Software 18(5):413–427CrossRef Feuillette S, Bousquet F, Le Goulven P (2003) SINUSE: a multi-agent model to negotiate water demand management on a free access water table. Environ Model Software 18(5):413–427CrossRef
Zurück zum Zitat Gill, Murray, Wright (1981) Practical optimization. Gill, Murray, Wright (1981) Practical optimization.
Zurück zum Zitat Gorelick SM, Voss CI, Gill PE, Murray W, Saunders MA, Wright MH (1984) Aquifer reclamation design: the use of contaminant transport simulation combined with nonlinear programming. Water Resour Res 20(4):415–427CrossRef Gorelick SM, Voss CI, Gill PE, Murray W, Saunders MA, Wright MH (1984) Aquifer reclamation design: the use of contaminant transport simulation combined with nonlinear programming. Water Resour Res 20(4):415–427CrossRef
Zurück zum Zitat Hsiao CT, Chang LC (2002) Dynamic optimal groundwater management with inclusion of fixed costs. J Water Resour Plann Manag 128(1):57–65CrossRef Hsiao CT, Chang LC (2002) Dynamic optimal groundwater management with inclusion of fixed costs. J Water Resour Plann Manag 128(1):57–65CrossRef
Zurück zum Zitat Hsiao CT, Chang LC (2005) Optimizing remediation for an unconfined aquifer using a hybrid algorithm. Ground Water 43(6):904–915CrossRef Hsiao CT, Chang LC (2005) Optimizing remediation for an unconfined aquifer using a hybrid algorithm. Ground Water 43(6):904–915CrossRef
Zurück zum Zitat Jones L, Willis R, Yeh WW-G (1987) Optimal control of nonlinear groundwater hydraulics using differential dynamic programming. Water Resour Res 23(11):2097–2106CrossRef Jones L, Willis R, Yeh WW-G (1987) Optimal control of nonlinear groundwater hydraulics using differential dynamic programming. Water Resour Res 23(11):2097–2106CrossRef
Zurück zum Zitat Kumar S (2004) Neural networks: a classroom approach. Tata McGraw-Hill, New Delhi Kumar S (2004) Neural networks: a classroom approach. Tata McGraw-Hill, New Delhi
Zurück zum Zitat Liao LZ, Shoemaker CA (1991) Convergence in unconstrained discrete-time differential dynamic programming. IEEE Trans Automat Contr 36:692–706CrossRef Liao LZ, Shoemaker CA (1991) Convergence in unconstrained discrete-time differential dynamic programming. IEEE Trans Automat Contr 36:692–706CrossRef
Zurück zum Zitat Liu Y, Minsker BS (2001) One-way spatial multiscale method for optimal bioremediation design. J Water Resour Plann Manag 127(2) Liu Y, Minsker BS (2001) One-way spatial multiscale method for optimal bioremediation design. J Water Resour Plann Manag 127(2)
Zurück zum Zitat Liu Y, Minsker BS (2002) Efficient multiscale methods for optimal in situ bioremediation design. J Water Resour Plann Manag 128(3) Liu Y, Minsker BS (2002) Efficient multiscale methods for optimal in situ bioremediation design. J Water Resour Plann Manag 128(3)
Zurück zum Zitat Mansfield CM, Shoemaker CA, Liao LZ (1998) Utilizing sparsity in time-varying optimal control of aquifer cleanup. J Water Resour Plann Manag 124(1):15–21CrossRef Mansfield CM, Shoemaker CA, Liao LZ (1998) Utilizing sparsity in time-varying optimal control of aquifer cleanup. J Water Resour Plann Manag 124(1):15–21CrossRef
Zurück zum Zitat MATLAB (2000). Neural network tool box for use with Matlab. User Guide. Ver. 4. The Mathwork, Inc. 3, Apple Hill Drive, MA., USA. MATLAB (2000). Neural network tool box for use with Matlab. User Guide. Ver. 4. The Mathwork, Inc. 3, Apple Hill Drive, MA., USA.
Zurück zum Zitat McCulloch W, Pitts W (1943) A logical calculus of ideas immanent in nervous activity. Bull Math Biophys 5:115–133CrossRef McCulloch W, Pitts W (1943) A logical calculus of ideas immanent in nervous activity. Bull Math Biophys 5:115–133CrossRef
Zurück zum Zitat McKinney DC, Lin MD (1994) Genetic algorithm solution of groundwater management models. Water Resour Res 30(6):1897–1906CrossRef McKinney DC, Lin MD (1994) Genetic algorithm solution of groundwater management models. Water Resour Res 30(6):1897–1906CrossRef
Zurück zum Zitat Murray DM, Yakowitz SJ (1979) Constrained differential dynamic programming and its application to multireservoir control. Water Resour Res 15(5):1017–1027CrossRef Murray DM, Yakowitz SJ (1979) Constrained differential dynamic programming and its application to multireservoir control. Water Resour Res 15(5):1017–1027CrossRef
Zurück zum Zitat Negnevitsky M (2002) Artificial intelligence: a guide to intelligent systems. Addison Wesley. Negnevitsky M (2002) Artificial intelligence: a guide to intelligent systems. Addison Wesley.
Zurück zum Zitat Philbrick CR, Kitanidis PK (1998) Optimal conjunctive-use operations and plans. Water Resour Res 34:1307–1316CrossRef Philbrick CR, Kitanidis PK (1998) Optimal conjunctive-use operations and plans. Water Resour Res 34:1307–1316CrossRef
Zurück zum Zitat Pijanowski BC, Brown DG, Shellito BA, Manik GA (2002) Using neural networks and GIS to forecast land use changes: a Land Transformation Model. Comput Environ Urban Syst 26:553–575CrossRef Pijanowski BC, Brown DG, Shellito BA, Manik GA (2002) Using neural networks and GIS to forecast land use changes: a Land Transformation Model. Comput Environ Urban Syst 26:553–575CrossRef
Zurück zum Zitat Pinder GF (1978) Galerkin finite element models for aquifer simulation, Rep. 78-WR-5, Dept. of Civ. Eng., Princeton Univ., Princeton, N. J. Pinder GF (1978) Galerkin finite element models for aquifer simulation, Rep. 78-WR-5, Dept. of Civ. Eng., Princeton Univ., Princeton, N. J.
Zurück zum Zitat Rao SVN, Bhallamudi SM, Thandaveswara BS, Sreenivasulu V (2005) Planning groundwater development in coastal deltas with paleo channels. Water Resour Manag 19:625–639CrossRef Rao SVN, Bhallamudi SM, Thandaveswara BS, Sreenivasulu V (2005) Planning groundwater development in coastal deltas with paleo channels. Water Resour Manag 19:625–639CrossRef
Zurück zum Zitat Rogers LL, Dowla FU (1994) Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling. Water Resour Res 30(2):457–481CrossRef Rogers LL, Dowla FU (1994) Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling. Water Resour Res 30(2):457–481CrossRef
Zurück zum Zitat Rogers LL, Dowla FU, Johnson VM (1995) Optimal field scale groundwater remediation using neural network and the genetic algorithm. Environ Sci Technol 29(5):1145–1155CrossRef Rogers LL, Dowla FU, Johnson VM (1995) Optimal field scale groundwater remediation using neural network and the genetic algorithm. Environ Sci Technol 29(5):1145–1155CrossRef
Zurück zum Zitat Samani N, Gohari-Moghadam M, Safavi AA (2007) A simple neural network model for the determination of aquifer parameters. J Hydrol 340:1–11CrossRef Samani N, Gohari-Moghadam M, Safavi AA (2007) A simple neural network model for the determination of aquifer parameters. J Hydrol 340:1–11CrossRef
Zurück zum Zitat Tsai CP, Lee TL (1999) Back-propagation network in tidal-level forecasting. Journal of Waterway, Port, Coastal, and Ocean engineering 125(4):195–202CrossRef Tsai CP, Lee TL (1999) Back-propagation network in tidal-level forecasting. Journal of Waterway, Port, Coastal, and Ocean engineering 125(4):195–202CrossRef
Zurück zum Zitat Wang M, Zheng C (1998) Ground Water management optimization using genetic algorithms and simulated annealing: formulation and comparison. J Am Water Resour Assoc 34(3):519–530CrossRef Wang M, Zheng C (1998) Ground Water management optimization using genetic algorithms and simulated annealing: formulation and comparison. J Am Water Resour Assoc 34(3):519–530CrossRef
Zurück zum Zitat Yeh WW-G (1992) System Analysis in ground-water planning and management. J Water Resour Plann Manag 118(3):224–237CrossRef Yeh WW-G (1992) System Analysis in ground-water planning and management. J Water Resour Plann Manag 118(3):224–237CrossRef
Zurück zum Zitat Yesilnacar MI, Sahinkaya E, Naz M, Ozkaya B (2008) Neural network prediction of nitrate in groundwater of Harran Plain, Turkey. Environ Geol 56(1):19–25CrossRef Yesilnacar MI, Sahinkaya E, Naz M, Ozkaya B (2008) Neural network prediction of nitrate in groundwater of Harran Plain, Turkey. Environ Geol 56(1):19–25CrossRef
Metadaten
Titel
Integration of Optimal Dynamic Control and Neural Network for Groundwater Quality Management
verfasst von
Liang-Cheng Chang
Hone-Jay Chu
Chin-Tsai Hsiao
Publikationsdatum
01.03.2012
Verlag
Springer Netherlands
Erschienen in
Water Resources Management / Ausgabe 5/2012
Print ISSN: 0920-4741
Elektronische ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-011-9957-0

Weitere Artikel der Ausgabe 5/2012

Water Resources Management 5/2012 Zur Ausgabe