Skip to main content
Erschienen in: Water Resources Management 4/2014

01.03.2014

Convergence of a Hydraulic Solver with Pressure-Dependent Demands

verfasst von: Yu. Kovalenko, N. B. Gorev, I. F. Kodzhespirova, E. Prokhorov, G. Trapaga

Erschienen in: Water Resources Management | Ausgabe 4/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper analyzes the convergence of a pressure-driven analysis (PDA) model of a water distribution network solver based on Todini’s global gradient algorithm. The PDA model is constructed by embedding a pressure−demand relationship in the EPANET simulator code. To avoid spurious convergence, a residual-based convergence error was used. The introduction of pressure-dependent demands is shown to result in a far poorer convergence. The study of solver convergence as a function of the smoothness of the pressure−demand curve has demonstrated that, statistically, a smooth pressure−demand relationship gives a somewhat better convergence. To improve convergence, use was made of a quadratic approximation of the Hazen–Williams head loss−flow relationship in the vicinity of zero and the correct implementation of the Darcy−Weisbach formula in the solver. To further improve convergence, an iteration step control technique called the line search was used. The analysis of solver convergence for different line search variants has shown that the line search in its usual form is not efficient enough and may result in poorer convergence. A necessary error decrease algorithm, whose use in the line search improves solver convergence, is proposed. It is shown that due to the convergence improvement methods the convergence of the PDA solver is somewhat better than that of the demand-driven analysis solver and sufficient for direct problems such as design, for example.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ang WH, Jowitt PW (2006) Solution for water distribution systems under pressure-deficient conditions. J Water Resour Plann Manag, ASCE 132(3):175–182CrossRef Ang WH, Jowitt PW (2006) Solution for water distribution systems under pressure-deficient conditions. J Water Resour Plann Manag, ASCE 132(3):175–182CrossRef
Zurück zum Zitat Bhave PR (1991) Analysis of flow in water distribution networks. Technomic, Lancaster Bhave PR (1991) Analysis of flow in water distribution networks. Technomic, Lancaster
Zurück zum Zitat Cheung PB, Van Zyl JE, Reis LFR (2005) Extension of EPANET for pressure driven demand modeling in water distribution system. CCWI2005 water management for the 21st century, Exeter, UK Cheung PB, Van Zyl JE, Reis LFR (2005) Extension of EPANET for pressure driven demand modeling in water distribution system. CCWI2005 water management for the 21st century, Exeter, UK
Zurück zum Zitat Elhay S, Simpson AR (2011) Dealing with zero flows in solving the nonlinear equations for water distribution systems. J Hydraul Eng 137(10):1216–1224CrossRef Elhay S, Simpson AR (2011) Dealing with zero flows in solving the nonlinear equations for water distribution systems. J Hydraul Eng 137(10):1216–1224CrossRef
Zurück zum Zitat Giustolisi O, Savic DA, Kapelan Z (2008) Pressure-driven demand and leakage simulation for water distribution networks. J Hydraul Eng 134(5):626–635CrossRef Giustolisi O, Savic DA, Kapelan Z (2008) Pressure-driven demand and leakage simulation for water distribution networks. J Hydraul Eng 134(5):626–635CrossRef
Zurück zum Zitat Gorev NB, Kodzhespirova IF, Kovalenko Y, Álvarez R, Prokhorov E, Ramos A (2011) Evolutionary testing of hydraulic simulator functionality. Water Resour Manag 25(8):1935–1947CrossRef Gorev NB, Kodzhespirova IF, Kovalenko Y, Álvarez R, Prokhorov E, Ramos A (2011) Evolutionary testing of hydraulic simulator functionality. Water Resour Manag 25(8):1935–1947CrossRef
Zurück zum Zitat Kelley CT (1987) Solving nonlinear equations with Newton’s method. Volume 1 of fundamentals of algorithms. SIAM, Philadelphia Kelley CT (1987) Solving nonlinear equations with Newton’s method. Volume 1 of fundamentals of algorithms. SIAM, Philadelphia
Zurück zum Zitat Kovalenko Y, Gorev N, Kodzhespirova I, Alvarez R, Prokhorov E (2012) Zero flow problem in the EPANET solver. Proceedings of the 14th Annual Water Distribution Systems Analysis Conference, WDSA 2012, September 24–27, Adelaide, South Australia Kovalenko Y, Gorev N, Kodzhespirova I, Alvarez R, Prokhorov E (2012) Zero flow problem in the EPANET solver. Proceedings of the 14th Annual Water Distribution Systems Analysis Conference, WDSA 2012, September 24–27, Adelaide, South Australia
Zurück zum Zitat Liu J, Yu G, Savic D (2011) Deficient-network simulation considering pressure-dependent demand. In: Sustainable solutions for water, sewer, gas, and oil pipelines (ICPTT 2011): 886–900. ASCE. doi:10.1061/41202(423)94 Liu J, Yu G, Savic D (2011) Deficient-network simulation considering pressure-dependent demand. In: Sustainable solutions for water, sewer, gas, and oil pipelines (ICPTT 2011): 886–900. ASCE. doi:10.​1061/​41202(423)94
Zurück zum Zitat Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in FORTRAN: The art of scientific computing. Cambridge University Press, New York Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in FORTRAN: The art of scientific computing. Cambridge University Press, New York
Zurück zum Zitat Rivera JJ, Kovalenko Y, Álvarez R, Ramos A, Gorev N, Kodzhespirova I, Prokhorov E (2010) Hydraulic simulator testing: Methods, tools, and results. Proceedings of the 12th Annual Water Distribution Systems Analysis Conference, WDSA 2010, September 12–15, Tucson, Arizona Rivera JJ, Kovalenko Y, Álvarez R, Ramos A, Gorev N, Kodzhespirova I, Prokhorov E (2010) Hydraulic simulator testing: Methods, tools, and results. Proceedings of the 12th Annual Water Distribution Systems Analysis Conference, WDSA 2010, September 12–15, Tucson, Arizona
Zurück zum Zitat Rossman L (2000) EPANET 2 users manual. U.S. Environmental Protection Agency, Risk Reduction Engineering Laboratory, Cincinnati Rossman L (2000) EPANET 2 users manual. U.S. Environmental Protection Agency, Risk Reduction Engineering Laboratory, Cincinnati
Zurück zum Zitat Siew C, Tanyimboh TT (2012) Pressure-dependent EPANET extension. Water Resour Manag 26(6):1477–1498CrossRef Siew C, Tanyimboh TT (2012) Pressure-dependent EPANET extension. Water Resour Manag 26(6):1477–1498CrossRef
Zurück zum Zitat Simpson A, Elhay S (2010) Jacobian matrix for solving water distribution system equations with the Darcy-Weisbach head-loss model. J Hydraul Eng 137(6):696–700CrossRef Simpson A, Elhay S (2010) Jacobian matrix for solving water distribution system equations with the Darcy-Weisbach head-loss model. J Hydraul Eng 137(6):696–700CrossRef
Zurück zum Zitat Todini E (2003) A more realistic approach to the “extended period simulation” of water distribution networks. In: Maksimovic C, Butler D, Memon FA (eds) Advances in water supply management. Swets & Zeitlinger, Lisse, pp 173–184 Todini E (2003) A more realistic approach to the “extended period simulation” of water distribution networks. In: Maksimovic C, Butler D, Memon FA (eds) Advances in water supply management. Swets & Zeitlinger, Lisse, pp 173–184
Zurück zum Zitat Todini E, Pilati S (1988) A gradient algorithm for the analysis of pipe networks. In: Coulbeck B, Orr C-H (eds) Computer applications in water supply, vol 1. Research Studies Press, England Todini E, Pilati S (1988) A gradient algorithm for the analysis of pipe networks. In: Coulbeck B, Orr C-H (eds) Computer applications in water supply, vol 1. Research Studies Press, England
Zurück zum Zitat Wagner JM, Shamir U, Marks DH (1988) Water distribution reliability: simulation methods. J Water Resour Plann Manag, ASCE 114(3):276–294CrossRef Wagner JM, Shamir U, Marks DH (1988) Water distribution reliability: simulation methods. J Water Resour Plann Manag, ASCE 114(3):276–294CrossRef
Zurück zum Zitat Wu Z, Wang R, Walski T, Yang S, Bowdler D, Baggett C (2008) Efficient pressure dependent demand model for large water distribution system analysis. Proc Water Distrib Syst Anal Symp 2006:1–15. doi:10.1061/40941(247)39 CrossRef Wu Z, Wang R, Walski T, Yang S, Bowdler D, Baggett C (2008) Efficient pressure dependent demand model for large water distribution system analysis. Proc Water Distrib Syst Anal Symp 2006:1–15. doi:10.​1061/​40941(247)39 CrossRef
Metadaten
Titel
Convergence of a Hydraulic Solver with Pressure-Dependent Demands
verfasst von
Yu. Kovalenko
N. B. Gorev
I. F. Kodzhespirova
E. Prokhorov
G. Trapaga
Publikationsdatum
01.03.2014
Verlag
Springer Netherlands
Erschienen in
Water Resources Management / Ausgabe 4/2014
Print ISSN: 0920-4741
Elektronische ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-014-0531-4

Weitere Artikel der Ausgabe 4/2014

Water Resources Management 4/2014 Zur Ausgabe