Skip to main content
Erschienen in: Water Resources Management 5/2015

01.03.2015

Projected Hydrologic Changes Under Mid-21st Century Climatic Conditions in a Sub-arctic Watershed

Erschienen in: Water Resources Management | Ausgabe 5/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The potential effects of mid-21st century climate change on the hydrology of the Cook Inlet watershed in south-central Alaska was analyzed in this study. Climate datasets representing a set of potential change scenarios for the period 2041–2070 were developed from the North American Regional Climate Change Assessment Program (NARCCAP) archive of dynamically downscaled climate products. The NARCCAP 50-km scale regional climate output was converted to realistic daily weather time series using a “change factor” method in which observed meteorological time series used for model calibration are perturbed. The perturbations are based on statistical summaries of change for the different climate scenarios, by month, as calculated from the differences between the 1971–2000 and 2040–2070 climate model simulation periods. The downscaled climate datasets were then used to run the Soil and Water Assessment Tool (SWAT) for the Cook Inlet watershed. Generally, it was observed that increasing rainfall and warmer temperatures across the Cook Inlet watershed led to a predicted increase in the stream flow in the major rivers, increase in 7-day low flows, and considerable increase in 100-year peak flow. Furthermore, under future climatic conditions precipitation is expected to increase in the Cook Inlet watershed but the amount of snowfall is expected to decrease. Also, the amount of snowmelt is expected to increase due to warmer temperature thereby causing the average annual fraction of snowfall as precipitation to decrease leading to a reduction in the glacial mass balance in the watershed. Moreover, average annual water yield, runoff, baseflow, snowmelt across the basin is expected to increase. More specifically the different hydrologic components varied seasonally and monthly driven by the seasonal and monthly changes in precipitation and temperature. However, the overall hydrology of the watershed is projected to remain snowmelt dominated through the mid-21st century without a major shift in regime. These simulations provide a benchmark of hydrologic sensitivity to potential future climate change in this watershed useful for identifying vulnerabilities and informing the development of adaptation responses.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abbaspour KC, Yang J, Maximov I, Siber R, Bogner K, Mieleitner J, Srinivasan R (2007) Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J Hydrol 333(2):413–430CrossRef Abbaspour KC, Yang J, Maximov I, Siber R, Bogner K, Mieleitner J, Srinivasan R (2007) Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J Hydrol 333(2):413–430CrossRef
Zurück zum Zitat Ahl RS, Woods SW, Zuuring HR (2008) Hydrologic calibration and validation of SWAT in a snow‐dominated rocky mountain Watershed Montana, USA. J Am Water Resour Assoc 44(6):1411–1430CrossRef Ahl RS, Woods SW, Zuuring HR (2008) Hydrologic calibration and validation of SWAT in a snow‐dominated rocky mountain Watershed Montana, USA. J Am Water Resour Assoc 44(6):1411–1430CrossRef
Zurück zum Zitat Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment part I: model development. J Am Water Resour Assoc 34(1):73–89CrossRef Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment part I: model development. J Am Water Resour Assoc 34(1):73–89CrossRef
Zurück zum Zitat Bekele EG, Knapp HV (2010) Watershed modeling to assessing impacts of potential climate change on water supply availability. Water Resour Manag 24(13):3299–3320CrossRef Bekele EG, Knapp HV (2010) Watershed modeling to assessing impacts of potential climate change on water supply availability. Water Resour Manag 24(13):3299–3320CrossRef
Zurück zum Zitat Brabets TP, Nelson GL, Dorava JM, Milner AM (1999) Water-quality assessment of the Cook Inlet Basin Alaska-- Environmental setting. US Geological Survey Water-Resources Investigations Report 99–4025; 65 p Brabets TP, Nelson GL, Dorava JM, Milner AM (1999) Water-quality assessment of the Cook Inlet Basin Alaska-- Environmental setting. US Geological Survey Water-Resources Investigations Report 99–4025; 65 p
Zurück zum Zitat Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19(18):4605–4630CrossRef Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19(18):4605–4630CrossRef
Zurück zum Zitat Faramarzi M, Abbaspour KC, Vaghefi SA, Farzaneh MR, Zehnder AJ, Srinivasan R, Yang H (2013) Modelling impacts of climate change on freshwater availability in Africa. J Hydrol 480:85–101CrossRef Faramarzi M, Abbaspour KC, Vaghefi SA, Farzaneh MR, Zehnder AJ, Srinivasan R, Yang H (2013) Modelling impacts of climate change on freshwater availability in Africa. J Hydrol 480:85–101CrossRef
Zurück zum Zitat Fiseha BM, Setegn SG, Melesse AM, Volpi E, Fiori A (2014) Impact of climate change on the hydrology of upper Tiber River Basin using bias corrected regional climate model. Water Resour Manag 28(5):1327–1343CrossRef Fiseha BM, Setegn SG, Melesse AM, Volpi E, Fiori A (2014) Impact of climate change on the hydrology of upper Tiber River Basin using bias corrected regional climate model. Water Resour Manag 28(5):1327–1343CrossRef
Zurück zum Zitat Fontaine TA, Cruickshank TS, Arnold JG, Hotchkiss RH (2002) Development of a snowfall–snowmelt routine for mountainous terrain for the Soil Water Assessment Tool (SWAT). J Hydrol 262(1):209–223CrossRef Fontaine TA, Cruickshank TS, Arnold JG, Hotchkiss RH (2002) Development of a snowfall–snowmelt routine for mountainous terrain for the Soil Water Assessment Tool (SWAT). J Hydrol 262(1):209–223CrossRef
Zurück zum Zitat Glass RL (1999) Water-quality assessment of the Cook Inlet Basin Alaska-Summary of data through 1997. US Geological Survey Water-Resources Investigations Report 99–4116; 110 p Glass RL (1999) Water-quality assessment of the Cook Inlet Basin Alaska-Summary of data through 1997. US Geological Survey Water-Resources Investigations Report 99–4116; 110 p
Zurück zum Zitat Hamlet AF, Lettenmaier DP (2007) Effects of 20th century warming and climate variability on flood risk in the Western US. Water Resour Res 43(6), W06427CrossRef Hamlet AF, Lettenmaier DP (2007) Effects of 20th century warming and climate variability on flood risk in the Western US. Water Resour Res 43(6), W06427CrossRef
Zurück zum Zitat Hartman CW, Johnson PR (1984) Environmental atlas of Alaska. Institute of Water Resources/Engineering Experiment Station, University of Alaska Fairbanks Hartman CW, Johnson PR (1984) Environmental atlas of Alaska. Institute of Water Resources/Engineering Experiment Station, University of Alaska Fairbanks
Zurück zum Zitat Hurd B, Leary N, Jones R, Smith J (1999) Relative regional vulnerability of water resources to climate change. J Am Water Resour Assoc 35(6):1399–1409CrossRef Hurd B, Leary N, Jones R, Smith J (1999) Relative regional vulnerability of water resources to climate change. J Am Water Resour Assoc 35(6):1399–1409CrossRef
Zurück zum Zitat Jayakrishnan R, Srinivasan R, Santhi C, Arnold JG (2005) Advances in the application of the SWAT model for water resources management. Hydrol Process 19(3):749–762CrossRef Jayakrishnan R, Srinivasan R, Santhi C, Arnold JG (2005) Advances in the application of the SWAT model for water resources management. Hydrol Process 19(3):749–762CrossRef
Zurück zum Zitat Johnson TE, Butcher JB, Parker A, Weaver CP (2011) Investigating the sensitivity of US streamflow and water quality to climate change: US EPA Global Change Research Program’s 20 Watersheds Project. J Water Resour Plan Manag 138(5):453–464CrossRef Johnson TE, Butcher JB, Parker A, Weaver CP (2011) Investigating the sensitivity of US streamflow and water quality to climate change: US EPA Global Change Research Program’s 20 Watersheds Project. J Water Resour Plan Manag 138(5):453–464CrossRef
Zurück zum Zitat Luzio M, Srinivasan R, Arnold JG (2002) Integration of watershed tools and SWAT model into BASINS. J Am Water Resour Assoc 38(4):1127–1141CrossRef Luzio M, Srinivasan R, Arnold JG (2002) Integration of watershed tools and SWAT model into BASINS. J Am Water Resour Assoc 38(4):1127–1141CrossRef
Zurück zum Zitat Mango LM, Melesse AM, McClain ME, Gann D, Setegn SG (2011) Land use and climate change impacts on the hydrology of the upper Mara River Basin Kenya: results of a modeling study to support better resource management. Hydrol Earth Syst Sci 15(7):2245–2258CrossRef Mango LM, Melesse AM, McClain ME, Gann D, Setegn SG (2011) Land use and climate change impacts on the hydrology of the upper Mara River Basin Kenya: results of a modeling study to support better resource management. Hydrol Earth Syst Sci 15(7):2245–2258CrossRef
Zurück zum Zitat Mantua N, Tohver I, Hamlet A (2010) Climate change impacts on streamflow extremes and summertime stream temperature and their possible consequences for freshwater salmon habitat in Washington State. Clim Chang 102(1–2):187–223CrossRef Mantua N, Tohver I, Hamlet A (2010) Climate change impacts on streamflow extremes and summertime stream temperature and their possible consequences for freshwater salmon habitat in Washington State. Clim Chang 102(1–2):187–223CrossRef
Zurück zum Zitat Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900CrossRef Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900CrossRef
Zurück zum Zitat Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2005) Soil and water assessment tool theoretical documentation. Grassland soil and water research laboratory. USDA- Agricultural Research Service Temple, TX Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2005) Soil and water assessment tool theoretical documentation. Grassland soil and water research laboratory. USDA- Agricultural Research Service Temple, TX
Zurück zum Zitat Rahman K, Maringanti C, Beniston M, Widmer F, Abbaspour K, Lehmann A (2013) Streamflow modeling in a highly managed mountainous glacier watershed using SWAT: the Upper Rhone River watershed case in Switzerland. Water Resour Manag 27(2):323–339CrossRef Rahman K, Maringanti C, Beniston M, Widmer F, Abbaspour K, Lehmann A (2013) Streamflow modeling in a highly managed mountainous glacier watershed using SWAT: the Upper Rhone River watershed case in Switzerland. Water Resour Manag 27(2):323–339CrossRef
Zurück zum Zitat Rosenthal WD, Srinivasan R, Arnold JG (1995) Alternative river management using a linked GIS-hydrology model. Trans ASAE 38(3):783–790CrossRef Rosenthal WD, Srinivasan R, Arnold JG (1995) Alternative river management using a linked GIS-hydrology model. Trans ASAE 38(3):783–790CrossRef
Zurück zum Zitat Santhi C, Arnold JG, Williams JR, Dugas WA, Srinivasan R, Hauck LM (2001) Validation of the SWAT model on a large river basin with point and nonpoint sources. J Am Water Resour Assoc 37(5):1169–1188CrossRef Santhi C, Arnold JG, Williams JR, Dugas WA, Srinivasan R, Hauck LM (2001) Validation of the SWAT model on a large river basin with point and nonpoint sources. J Am Water Resour Assoc 37(5):1169–1188CrossRef
Zurück zum Zitat Santhi C, Muttiah RS, Arnold JG, Srinivasan R (2005) A GIS-based regional planning tool for irrigation demand assessment and savings using SWAT. Trans ASAE 48(1):137–147CrossRef Santhi C, Muttiah RS, Arnold JG, Srinivasan R (2005) A GIS-based regional planning tool for irrigation demand assessment and savings using SWAT. Trans ASAE 48(1):137–147CrossRef
Zurück zum Zitat Spruill CA, Workman SR, Taraba JL (2000) Simulation of daily and monthly stream discharge from small watersheds using the SWAT model. Trans ASAE 43(6):1431–1439CrossRef Spruill CA, Workman SR, Taraba JL (2000) Simulation of daily and monthly stream discharge from small watersheds using the SWAT model. Trans ASAE 43(6):1431–1439CrossRef
Zurück zum Zitat Srinivasan R, Arnold JG (1994) Integration of a basin-scale water quality model with GIS. J Am Water Resour Assoc 30(3):453–462CrossRef Srinivasan R, Arnold JG (1994) Integration of a basin-scale water quality model with GIS. J Am Water Resour Assoc 30(3):453–462CrossRef
Zurück zum Zitat Srinivasan R, Ramanarayanan TS, Arnold JG, Bednarz ST (1998) Large area hydrologic modeling and assessment part II: model application. J Am Water Resour Assoc 34(1):91–101CrossRef Srinivasan R, Ramanarayanan TS, Arnold JG, Bednarz ST (1998) Large area hydrologic modeling and assessment part II: model application. J Am Water Resour Assoc 34(1):91–101CrossRef
Zurück zum Zitat Sun Y, Solomon S, Dai A, Portmann RW (2006) How often does it rain? J Clim 19(6):916–934CrossRef Sun Y, Solomon S, Dai A, Portmann RW (2006) How often does it rain? J Clim 19(6):916–934CrossRef
Zurück zum Zitat USEPA (2008) Using the BASINS Meteorological Database (Version 2006). BASINS Technical Note 10. Office of Water, USEPA, Washington DC USEPA (2008) Using the BASINS Meteorological Database (Version 2006). BASINS Technical Note 10. Office of Water, USEPA, Washington DC
Zurück zum Zitat USEPA (United States Environmental Protection Agency) (2009) BASINS 40 Climate Assessment Tool (CAT): Supporting Documentation and User’s Manual EPA/600/R-8/088 F. Global Change Research Program, National Center for Environmental Assessment, Office of Research and Development, USEPA,Washington DC USEPA (United States Environmental Protection Agency) (2009) BASINS 40 Climate Assessment Tool (CAT): Supporting Documentation and User’s Manual EPA/600/R-8/088 F. Global Change Research Program, National Center for Environmental Assessment, Office of Research and Development, USEPA,Washington DC
Zurück zum Zitat Wang X, Melesse AM (2005) Evaluation of the SWAT model’s snowmelt hydrology in a northwestern Minnesota watershed. Trans ASAE 48(4):1359–1376CrossRef Wang X, Melesse AM (2005) Evaluation of the SWAT model’s snowmelt hydrology in a northwestern Minnesota watershed. Trans ASAE 48(4):1359–1376CrossRef
Zurück zum Zitat Weber A, Fohrer N, Möller D (2001) Long-term land use changes in a mesoscale watershed due to socio-economic factors—effects on landscape structures and functions. Ecol Model 140(1):125–140CrossRef Weber A, Fohrer N, Möller D (2001) Long-term land use changes in a mesoscale watershed due to socio-economic factors—effects on landscape structures and functions. Ecol Model 140(1):125–140CrossRef
Zurück zum Zitat Wu Y, Liu S, Abdul-Aziz OI (2012) Hydrological effects of the increased CO2 and climate change in the Upper Mississippi River Basin using a modified SWAT. Clim Chang 110(3–4):977–1003CrossRef Wu Y, Liu S, Abdul-Aziz OI (2012) Hydrological effects of the increased CO2 and climate change in the Upper Mississippi River Basin using a modified SWAT. Clim Chang 110(3–4):977–1003CrossRef
Zurück zum Zitat Yen H, Jeong J, Feng Q, Deb D (2014) Assessment of input uncertainty in SWAT using latent variables. Water Resour Manag 1–17 Yen H, Jeong J, Feng Q, Deb D (2014) Assessment of input uncertainty in SWAT using latent variables. Water Resour Manag 1–17
Zurück zum Zitat Zheng J, Li GY, Han ZZ, Meng GX (2010) Hydrological cycle simulation of an irrigation district based on a SWAT model. Math Comput Model 51(11):1312–1318CrossRef Zheng J, Li GY, Han ZZ, Meng GX (2010) Hydrological cycle simulation of an irrigation district based on a SWAT model. Math Comput Model 51(11):1312–1318CrossRef
Metadaten
Titel
Projected Hydrologic Changes Under Mid-21st Century Climatic Conditions in a Sub-arctic Watershed
Publikationsdatum
01.03.2015
Erschienen in
Water Resources Management / Ausgabe 5/2015
Print ISSN: 0920-4741
Elektronische ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-014-0887-5

Weitere Artikel der Ausgabe 5/2015

Water Resources Management 5/2015 Zur Ausgabe