Skip to main content
Erschienen in: Water Resources Management 9/2015

01.07.2015

Semi-Analytical Model for Estimation of Unsteady Seepage from a Large Water Body Influenced by Variable Flows

verfasst von: Narayan C. Ghosh, Sumant Kumar, Gesche Grützmacher, Shakeel Ahmed, Surjeet Singh, Christoph Sprenger, Raj Pal Singh, Biswajit Das, Tanvi Arora

Erschienen in: Water Resources Management | Ausgabe 9/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper presents semi-analytical mathematical model to estimate unsteady groundwater recharge resulting from variable depth of water in a large water body, influenced by time variant inflows and outflows. The model has been derived by integrating Hantush’s (1967) analytical expression for water table rise due to recharge from a rectangular spreading basin into the water balance equation of the water body. The model has been applied to a test study site in Raipur (India) for assessing viability of Managed Aquifer Recharge (MAR) from a lake located on an area dominated by the massive limestone formation. The components of the water balance equation have been carried out by the comprehensive analysis of the hydrological and hydrogeological aspects of the lake. The hydrological components include analysis of rainfall-runoff, evaporation rate, lake water quality and the hydrogeological components include aquifer characterization, parameters estimate, ambient groundwater level and quality. The time variant depth of water resulting from the interaction of water balance components, computed using the model, has been compared with the measured data and found a satisfactory match, as revealed from RMSE analysis. Compared to the inflows and lake storages, the recharge rates from the lake found very less, which ranged between 3.75 and 4.82 mm/day for depth of water ranged between 2.5 and 3.36 m. The lake water quality indicated contamination by bacteriological parameters (viz. Fecal coliform and Total coliform), turbidity and COD, exceeding the permissible limit of drinking water standards (IS-10500:2012). The aquifer formations below the lakebed and around possess thick limestone formation - a limiting factor for MAR-ASTR proposition, and hence no engineered hydrogeological intervention has been found viable to enhance the recharge rate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Adyalkar P G, and V V S Mani (1972). An attempt at estimating transmissivities of Trappean aquifers from specific capacity values. Jour Hydrol 17(3):237–241 Adyalkar P G, and V V S Mani (1972). An attempt at estimating transmissivities of Trappean aquifers from specific capacity values. Jour Hydrol 17(3):237–241
Zurück zum Zitat Ali, Shakir, Ghosh NC, Singh R, Sethy BK (2013) Generalized explicit models for estimation of wetting front length and potential recharge. Water Resour Manag 27:2429–2445, DOI 10 1007/s11269-013-0295-2 Ali, Shakir, Ghosh NC, Singh R, Sethy BK (2013) Generalized explicit models for estimation of wetting front length and potential recharge. Water Resour Manag 27:2429–2445, DOI 10 1007/s11269-013-0295-2
Zurück zum Zitat Scanlon BR, Dutton AR, Sophocleous MA (2002) Groundwater recharge in Texas. Texas Water Development Board, Bureau of Economic Geology, University of Texas at Austin 124 Scanlon BR, Dutton AR, Sophocleous MA (2002) Groundwater recharge in Texas. Texas Water Development Board, Bureau of Economic Geology, University of Texas at Austin 124
Zurück zum Zitat Bureau of Indian Standards (BIS) (2012) Indian standard: drinking water-specification (second revision), IS 10500:2012. New Delhi Bureau of Indian Standards (BIS) (2012) Indian standard: drinking water-specification (second revision), IS 10500:2012. New Delhi
Zurück zum Zitat Central Ground Water Board (CGWB) (1996) National perspective plan for recharge to groundwater by utilizing surplus monsoon runoff. Ministry of Water Resources, Govt. of India, New Delhi Central Ground Water Board (CGWB) (1996) National perspective plan for recharge to groundwater by utilizing surplus monsoon runoff. Ministry of Water Resources, Govt. of India, New Delhi
Zurück zum Zitat Central Ground Water Board (CGWB) (2002) Master plan for artificial recharge to ground water in India. Ministry of Water Resources, Govt. of India, New Delhi, p 117 Central Ground Water Board (CGWB) (2002) Master plan for artificial recharge to ground water in India. Ministry of Water Resources, Govt. of India, New Delhi, p 117
Zurück zum Zitat Central Ground Water Board (CGWB) (2007a) Mannual on artificial recharge to ground water. Ministry of Water Resources, Govt. of India, New Delhi, p 185 Central Ground Water Board (CGWB) (2007a) Mannual on artificial recharge to ground water. Ministry of Water Resources, Govt. of India, New Delhi, p 185
Zurück zum Zitat Central Ground Water Board (CGWB) (2013) Master plan for artificial recharge to ground water in India. Ministry of Water Resources, Govt. of India, New Delhi, p 208 Central Ground Water Board (CGWB) (2013) Master plan for artificial recharge to ground water in India. Ministry of Water Resources, Govt. of India, New Delhi, p 208
Zurück zum Zitat Chow VT, Maidment DR, Mays LW (1988) Applied hydrology. Tata McGraw-Hill Edition 572p Chow VT, Maidment DR, Mays LW (1988) Applied hydrology. Tata McGraw-Hill Edition 572p
Zurück zum Zitat Dillon PJ (2005) Future management of aquifer recharge. Hydrogeol J 13(1):313–316CrossRef Dillon PJ (2005) Future management of aquifer recharge. Hydrogeol J 13(1):313–316CrossRef
Zurück zum Zitat Dillon PJ, Pavelic P, Page D, Beringen H, Ward J (2009) Managed aquifer recharge: an introduction, Waterlins report series no. 13. National Water Commission, Canberra, p 37 Dillon PJ, Pavelic P, Page D, Beringen H, Ward J (2009) Managed aquifer recharge: an introduction, Waterlins report series no. 13. National Water Commission, Canberra, p 37
Zurück zum Zitat Victoria EPA (2009) Guidelines for Managed Aquifer Recharge (MAR)-health and environmental risk management. Publication 1290:21p Victoria EPA (2009) Guidelines for Managed Aquifer Recharge (MAR)-health and environmental risk management. Publication 1290:21p
Zurück zum Zitat Hantush MS (1967) Growth and decay of groundwater mounds in response to uniform percolation. Water Resour Res 3:227–234CrossRef Hantush MS (1967) Growth and decay of groundwater mounds in response to uniform percolation. Water Resour Res 3:227–234CrossRef
Zurück zum Zitat Hassan GZ, Bhutta MN (1996) A water balance model for estimation of groundwater recharge in Rechana doab. Pak Irrig Drain Syst 10:297–317CrossRef Hassan GZ, Bhutta MN (1996) A water balance model for estimation of groundwater recharge in Rechana doab. Pak Irrig Drain Syst 10:297–317CrossRef
Zurück zum Zitat Jain SK, Agarwal PK, Singh VP (2007) Hydrology and water resources of India (1st ed.). Water Sci Technol Library 57:1033 Jain SK, Agarwal PK, Singh VP (2007) Hydrology and water resources of India (1st ed.). Water Sci Technol Library 57:1033
Zurück zum Zitat Jyrkama MI, Sykes JF, Norman SD (2002) Recharge estimation for transient ground water modelling. Ground Water 40(6):638–648CrossRef Jyrkama MI, Sykes JF, Norman SD (2002) Recharge estimation for transient ground water modelling. Ground Water 40(6):638–648CrossRef
Zurück zum Zitat Koche CD, Chawla VK (2000) Dependability criteria in irrigation planning. J Ind Water Resour Soc 20(1):1–15 Koche CD, Chawla VK (2000) Dependability criteria in irrigation planning. J Ind Water Resour Soc 20(1):1–15
Zurück zum Zitat National Geophysical Research Institute (NGRI) (2013) Geo-electrical investigations in Raipur Urban Area, - A report prepared under the ‘SAPH PANI (EU Grant Agreement no. 282911) by Arora, Tanvi, Gaur Tarun, Gautam Rekha, Chabbra Kapil, Mundari Jai Prakash,and Ahmed Shakeel National Geophysical Research Institute (NGRI) (2013) Geo-electrical investigations in Raipur Urban Area, - A report prepared under the ‘SAPH PANI (EU Grant Agreement no. 282911) by Arora, Tanvi, Gaur Tarun, Gautam Rekha, Chabbra Kapil, Mundari Jai Prakash,and Ahmed Shakeel
Zurück zum Zitat Ping J, Craig N, Wei X (2014) Quantification of groundwater recharge using the chloride mass balance method in a semi-arid mountain terrain, South Interior British Columbia. Can J Chem Parma Res 6(1):383–388 Ping J, Craig N, Wei X (2014) Quantification of groundwater recharge using the chloride mass balance method in a semi-arid mountain terrain, South Interior British Columbia. Can J Chem Parma Res 6(1):383–388
Zurück zum Zitat SAPH PANI (2012) Report on existing MAR practice and experience in India, especially in Chennai, Maheshwaram, Raipur. Project supported by the European Commission within the Seventh Framework Programme Grant agreement No. 282911. 86p SAPH PANI (2012) Report on existing MAR practice and experience in India, especially in Chennai, Maheshwaram, Raipur. Project supported by the European Commission within the Seventh Framework Programme Grant agreement No. 282911. 86p
Zurück zum Zitat Slichter CS (1906) The underflow in Arkansas Valley in Western Kansas. US Geol Surv Water Supply Pap 153:61 Slichter CS (1906) The underflow in Arkansas Valley in Western Kansas. US Geol Surv Water Supply Pap 153:61
Zurück zum Zitat Strahler AN (1957) Quantitative analysis of watershed geomorphology. Trans AGU 38(6):913–920CrossRef Strahler AN (1957) Quantitative analysis of watershed geomorphology. Trans AGU 38(6):913–920CrossRef
Zurück zum Zitat United States Department of Agriculture (USDA) (1986) Urban hydrology for small watersheds. Technical Release 55 (TR-55) (2nd ed). Natural Resources Conservation Service, Conservation Engineering Division United States Department of Agriculture (USDA) (1986) Urban hydrology for small watersheds. Technical Release 55 (TR-55) (2nd ed). Natural Resources Conservation Service, Conservation Engineering Division
Zurück zum Zitat Yeh H-F, Lee C-H, Chen J-F, Wei- Ping C (2007) Estimation of groundwater recharge using water balance model. Water Resour 34(2):153–164CrossRef Yeh H-F, Lee C-H, Chen J-F, Wei- Ping C (2007) Estimation of groundwater recharge using water balance model. Water Resour 34(2):153–164CrossRef
Metadaten
Titel
Semi-Analytical Model for Estimation of Unsteady Seepage from a Large Water Body Influenced by Variable Flows
verfasst von
Narayan C. Ghosh
Sumant Kumar
Gesche Grützmacher
Shakeel Ahmed
Surjeet Singh
Christoph Sprenger
Raj Pal Singh
Biswajit Das
Tanvi Arora
Publikationsdatum
01.07.2015
Verlag
Springer Netherlands
Erschienen in
Water Resources Management / Ausgabe 9/2015
Print ISSN: 0920-4741
Elektronische ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-015-0985-z

Weitere Artikel der Ausgabe 9/2015

Water Resources Management 9/2015 Zur Ausgabe