Skip to main content
Erschienen in: Water Resources Management 14/2015

01.11.2015

Application of Feedforward Artificial Neural Network in Muskingum Flood Routing: a Black-Box Forecasting Approach for a Natural River System

verfasst von: Zaw Zaw Latt

Erschienen in: Water Resources Management | Ausgabe 14/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to limited data sources, practical situations in most developing countries favor black-box models for real time flood forecasting. The Muskingum routing model, despite its limitations, is a widely used technique, and produces flood values and the time of the flood peak. This method has been extensively researched to find an ideal parameter estimation of its nonlinear forms, which require more parameters, and are not often adequate for flood routing in natural rivers with multiple peaks. This study examines the application of artificial neural network (ANN) approach based on the Muskingum equation, and compares the feedforward multilayer perceptron (FMLP) models to other reported methods that have tackled the parameter estimation of the nonlinear Muskingum model for benchmark data with a single-peak hydrograph. Using such statistics as the sum of squared deviation, coefficient of efficiency, error of peak discharge and error of time to peak, the FMLP model showed a clear-cut superiority over other methods in flood routing of well-known benchmark data. Further, the FMLP routing model was also proven a promising model for routing real flood hydrographs with multiple peaks of the Chindwin River in northern Myanmar. Unlike other parameter estimation methods, the ANN models directly captured the routing relationship, based on the Muskingum equation and performed well in dealing with complex systems. Because ANN models avoid the complexity of physical processes, the study’s results can contribute to the real time flood forecasting in developing countries, where catchment data are scarce.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Barati R (2011) Parameter estimation of nonlinear Muskinugm models using the Nelder-Mead simplex algorithm. J Hydrol Eng 16(11):946–954CrossRef Barati R (2011) Parameter estimation of nonlinear Muskinugm models using the Nelder-Mead simplex algorithm. J Hydrol Eng 16(11):946–954CrossRef
Zurück zum Zitat Barati R (2013) Application of excel solver for parameter estimation of the nonlinear Muskingum models. KSCE J Civil Eng 17(5):1139–1148CrossRef Barati R (2013) Application of excel solver for parameter estimation of the nonlinear Muskingum models. KSCE J Civil Eng 17(5):1139–1148CrossRef
Zurück zum Zitat Berz G (2000) Flood disasters: lessons from the past—worries for the future. Proceeding of the ICE. Water Mar Eng 142(1):3–8 Berz G (2000) Flood disasters: lessons from the past—worries for the future. Proceeding of the ICE. Water Mar Eng 142(1):3–8
Zurück zum Zitat Chow VT, Maidment DR, Mays LW (1988) Applied Hydrology. McGraw Hill, Singapore Chow VT, Maidment DR, Mays LW (1988) Applied Hydrology. McGraw Hill, Singapore
Zurück zum Zitat Chu HJ (2009) The Muskingum flood routing model using a neuro-fuzzy approach. KSCE J Civil Eng 13(5):371–376CrossRef Chu HJ (2009) The Muskingum flood routing model using a neuro-fuzzy approach. KSCE J Civil Eng 13(5):371–376CrossRef
Zurück zum Zitat Chu HJ, Chang LC (2009) Applying particle swarm optimization to parameter estimation of the nonlinear Muskingum model. J Hydrol Eng 14(9):1024–1027CrossRef Chu HJ, Chang LC (2009) Applying particle swarm optimization to parameter estimation of the nonlinear Muskingum model. J Hydrol Eng 14(9):1024–1027CrossRef
Zurück zum Zitat Das A (2004) Parameter estimation for Muskingum models. J Irrig Drain Eng 130(2):140–147CrossRef Das A (2004) Parameter estimation for Muskingum models. J Irrig Drain Eng 130(2):140–147CrossRef
Zurück zum Zitat Das A (2009) Reverse stream flow routing by using Muskingum models. Sādhanā 34(Part 3):483–499 Das A (2009) Reverse stream flow routing by using Muskingum models. Sādhanā 34(Part 3):483–499
Zurück zum Zitat Dooge JCI (1973) Linear theory of hydrologic systems. Agricultural Research Service, USDA, Technical Bulletin No-1468, Washington D.C Dooge JCI (1973) Linear theory of hydrologic systems. Agricultural Research Service, USDA, Technical Bulletin No-1468, Washington D.C
Zurück zum Zitat Geem ZW (2006) Parameter estimation for the nonlinear Muskingum model using the BFGS techniques. J Irrig Drain Eng 132(5):474–478CrossRef Geem ZW (2006) Parameter estimation for the nonlinear Muskingum model using the BFGS techniques. J Irrig Drain Eng 132(5):474–478CrossRef
Zurück zum Zitat Gill MA (1978) Flood routing by the Muskingum method. J Hydrol 36:353–363CrossRef Gill MA (1978) Flood routing by the Muskingum method. J Hydrol 36:353–363CrossRef
Zurück zum Zitat Hayes AF (2007) Using heteroskedasticity-consistent standard error estimators in OLS regression: an introduction and software implementation. Behav Res Methods 39(4):709–722CrossRef Hayes AF (2007) Using heteroskedasticity-consistent standard error estimators in OLS regression: an introduction and software implementation. Behav Res Methods 39(4):709–722CrossRef
Zurück zum Zitat Kim JH, Geem ZW, Kim ES (2001) Parameter estimation of the non-linear Muskingum model using harmony search. J Am Water Resour Assoc 37(5):1131–1138CrossRef Kim JH, Geem ZW, Kim ES (2001) Parameter estimation of the non-linear Muskingum model using harmony search. J Am Water Resour Assoc 37(5):1131–1138CrossRef
Zurück zum Zitat Latt ZZ, Wittenberg H (2014a) Improving flood forecasting in a developing country: a comparative study of stepwise multiple linear regression and artificial neural network. Water Resour Manag 28(8):2109–2128. doi:10.1007/s11269-014-0600-8 CrossRef Latt ZZ, Wittenberg H (2014a) Improving flood forecasting in a developing country: a comparative study of stepwise multiple linear regression and artificial neural network. Water Resour Manag 28(8):2109–2128. doi:10.​1007/​s11269-014-0600-8 CrossRef
Zurück zum Zitat Latt ZZ, Wittenberg H (2014b) Hydrology and flood probability of the monsoon-dominated Chindwin River in northern Myanmar. J Water Clim Chang. doi:10.2166/wcc.2014.075 Latt ZZ, Wittenberg H (2014b) Hydrology and flood probability of the monsoon-dominated Chindwin River in northern Myanmar. J Water Clim Chang. doi:10.​2166/​wcc.​2014.​075
Zurück zum Zitat Limsombunchai V, Gan C, Lee M (2004) House price prediction: hedonic price model vs. artificial neural network. Am J Appl Sci 1(3):193–201CrossRef Limsombunchai V, Gan C, Lee M (2004) House price prediction: hedonic price model vs. artificial neural network. Am J Appl Sci 1(3):193–201CrossRef
Zurück zum Zitat Luo J, Xie J (2010) Parameter estimation for nonlinear Muskingum model based on immune clonal selection algorithm. J Hydrol Eng 15(10):844–851CrossRef Luo J, Xie J (2010) Parameter estimation for nonlinear Muskingum model based on immune clonal selection algorithm. J Hydrol Eng 15(10):844–851CrossRef
Zurück zum Zitat McCarthy GT (1938) The unit hydrograph and flood routing. Proc., Conference of the North Atlantic Division, U.S Army Corps of Engineers, New London, CT McCarthy GT (1938) The unit hydrograph and flood routing. Proc., Conference of the North Atlantic Division, U.S Army Corps of Engineers, New London, CT
Zurück zum Zitat Minns AW, Hall MJ (1996) Artificial neural networks as rainfall-runoff models. Hydrol Sci 41(3):399–417CrossRef Minns AW, Hall MJ (1996) Artificial neural networks as rainfall-runoff models. Hydrol Sci 41(3):399–417CrossRef
Zurück zum Zitat Mohan S (1997) Parameter estimation of nonlinear Muskingum models using genetic algorithm. J Hydraul Eng 123(2):137–142CrossRef Mohan S (1997) Parameter estimation of nonlinear Muskingum models using genetic algorithm. J Hydraul Eng 123(2):137–142CrossRef
Zurück zum Zitat Moussa R, Chahinian N (2009) Comparison of different multi-objective calibration criteria using a conceptual rainfall-runoff model of flood events. Hydrol Earth Syst Sci 13:519–535CrossRef Moussa R, Chahinian N (2009) Comparison of different multi-objective calibration criteria using a conceptual rainfall-runoff model of flood events. Hydrol Earth Syst Sci 13:519–535CrossRef
Zurück zum Zitat Muleta MK (2012) Model performance sensitivity to objective function during automated calibrations. J Hydrol Eng 17(6):756–767CrossRef Muleta MK (2012) Model performance sensitivity to objective function during automated calibrations. J Hydrol Eng 17(6):756–767CrossRef
Zurück zum Zitat O’Donnell T (1985) A direct three-parameter Muskingum procedure incorporating lateral inflow. Hydrol Sci 30(4):479–496CrossRef O’Donnell T (1985) A direct three-parameter Muskingum procedure incorporating lateral inflow. Hydrol Sci 30(4):479–496CrossRef
Zurück zum Zitat Orouji H, Haddad OB, Mehdipour EF, Mariño MA (2013) Estimation of Muskingum parameter by meta-heuristic algorithms. Water Manag Inst Civil Eng 166(6):315–324CrossRef Orouji H, Haddad OB, Mehdipour EF, Mariño MA (2013) Estimation of Muskingum parameter by meta-heuristic algorithms. Water Manag Inst Civil Eng 166(6):315–324CrossRef
Zurück zum Zitat Othman F, Naseri M (2011) Reservoir inflow forecasting using artificial neural work. Int J Phys Sci 6(3):434–440 Othman F, Naseri M (2011) Reservoir inflow forecasting using artificial neural work. Int J Phys Sci 6(3):434–440
Zurück zum Zitat Papamichail D, Georgiou P (1994) Parameter estimation of linear and nonlinear Muskingum models for river flood routing. Trans Ecol Environ 7:139–146 Papamichail D, Georgiou P (1994) Parameter estimation of linear and nonlinear Muskingum models for river flood routing. Trans Ecol Environ 7:139–146
Zurück zum Zitat Reddy JM, Wilamowski BM (2000) Adaptive neural networks in regulation of river flows. In: Govindaraju RS, Rao AR (eds) Artificial Neural Networks in Hydrology. Kluwer Academic Publishers, the Netherlands, pp 153–177CrossRef Reddy JM, Wilamowski BM (2000) Adaptive neural networks in regulation of river flows. In: Govindaraju RS, Rao AR (eds) Artificial Neural Networks in Hydrology. Kluwer Academic Publishers, the Netherlands, pp 153–177CrossRef
Zurück zum Zitat Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL, the PDP research group (eds) Parallel distributed processing, vol 1. MIT Press, Cambridge, pp 318–362 Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL, the PDP research group (eds) Parallel distributed processing, vol 1. MIT Press, Cambridge, pp 318–362
Zurück zum Zitat Sattari NT, Apaydin H, Ozturk F (2012) Flow estimations for the Sohu stream using artificial neural networks. Environ Earth Sci 66(7):2031–2045CrossRef Sattari NT, Apaydin H, Ozturk F (2012) Flow estimations for the Sohu stream using artificial neural networks. Environ Earth Sci 66(7):2031–2045CrossRef
Zurück zum Zitat Shamseldin AY (2010) Artificial neural network model for river flow forecasting in a developing country. J Hydroinf 12(1):22–34CrossRef Shamseldin AY (2010) Artificial neural network model for river flow forecasting in a developing country. J Hydroinf 12(1):22–34CrossRef
Zurück zum Zitat Singh VP, McCANN RC (1980) Some notes on Muskingum method of flood routing. J Hyd 48:343–361CrossRef Singh VP, McCANN RC (1980) Some notes on Muskingum method of flood routing. J Hyd 48:343–361CrossRef
Zurück zum Zitat Sivapragasam C, Maheswaran R, Venkatesh V (2008) Genetic programming approach for flood routing in natural channels. Hydrol Process 22(5):623–628 Sivapragasam C, Maheswaran R, Venkatesh V (2008) Genetic programming approach for flood routing in natural channels. Hydrol Process 22(5):623–628
Zurück zum Zitat Stefanon B, Volpe V, Moscardini S, Gruber L (2001) Using artificial neural network to model the urine excretion of total and purine derivative Nitrogen fraction in cows. J Nutr 131(12):3307–3315 Stefanon B, Volpe V, Moscardini S, Gruber L (2001) Using artificial neural network to model the urine excretion of total and purine derivative Nitrogen fraction in cows. J Nutr 131(12):3307–3315
Zurück zum Zitat Tayfur G, Moramarco T, Singh VP (2007) Predicting and forecasting flow discharge at sites receiving significant lateral inflow. Hydrol Process 21(14):1848–1859CrossRef Tayfur G, Moramarco T, Singh VP (2007) Predicting and forecasting flow discharge at sites receiving significant lateral inflow. Hydrol Process 21(14):1848–1859CrossRef
Zurück zum Zitat Thirumalaiah K, Deo MC (1998) Real-time flood forecasting using neural networks. Comput Aided Civ Infrastruct Eng 13:101–111CrossRef Thirumalaiah K, Deo MC (1998) Real-time flood forecasting using neural networks. Comput Aided Civ Infrastruct Eng 13:101–111CrossRef
Zurück zum Zitat Tung Y (1985) River flood routing by nonlinear Muskingum method. J Hydraul Eng 111(12):1447–1460CrossRef Tung Y (1985) River flood routing by nonlinear Muskingum method. J Hydraul Eng 111(12):1447–1460CrossRef
Zurück zum Zitat Weinmann PE (1977) Comparison of flood routing methods for natural rivers. Civil Engineering Reports No. 2, Monash University Weinmann PE (1977) Comparison of flood routing methods for natural rivers. Civil Engineering Reports No. 2, Monash University
Zurück zum Zitat Wilson EM (1974) Engineering Hydrology. MacMillan Education Ltd., Hampshire Wilson EM (1974) Engineering Hydrology. MacMillan Education Ltd., Hampshire
Zurück zum Zitat Yang CC, Chang LC (2001) Enhanced efficiency of the parameter estimation of Muskingum model using artificial neural network. J Hydrosci Hydraul Eng 19(2):47–55 Yang CC, Chang LC (2001) Enhanced efficiency of the parameter estimation of Muskingum model using artificial neural network. J Hydrosci Hydraul Eng 19(2):47–55
Zurück zum Zitat Yang J, Castelli F, Chen Y (2014) Multiobjective sensitivity analysis and optimization of distributed hydrologic model MOBIDIC. Hydrol Earth Syst Sci 18:4101–4112CrossRef Yang J, Castelli F, Chen Y (2014) Multiobjective sensitivity analysis and optimization of distributed hydrologic model MOBIDIC. Hydrol Earth Syst Sci 18:4101–4112CrossRef
Zurück zum Zitat Yoon J, Padmanabhan G (1993) Parameter estimation of linear and nonlinear Muskingum models. J Water Resour Plan Manag 199(5):600–610CrossRef Yoon J, Padmanabhan G (1993) Parameter estimation of linear and nonlinear Muskingum models. J Water Resour Plan Manag 199(5):600–610CrossRef
Metadaten
Titel
Application of Feedforward Artificial Neural Network in Muskingum Flood Routing: a Black-Box Forecasting Approach for a Natural River System
verfasst von
Zaw Zaw Latt
Publikationsdatum
01.11.2015
Verlag
Springer Netherlands
Erschienen in
Water Resources Management / Ausgabe 14/2015
Print ISSN: 0920-4741
Elektronische ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-015-1100-1

Weitere Artikel der Ausgabe 14/2015

Water Resources Management 14/2015 Zur Ausgabe