Skip to main content
Erschienen in: Wireless Networks 5/2019

06.04.2019

Bhattacharyya distance criterion based multibit quantizer design for cooperative spectrum sensing in cognitive radio networks

verfasst von: Yuanhua Fu, Zhiming He

Erschienen in: Wireless Networks | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cooperative spectrum sensing (CSS) is crucial for dynamic spectrum access in cognitive radio networks. This paper considers a CSS scheme by using a multilevel quantizer in each sensing node (SN) to quantize the local energy detector’s observation. A log-likelihood ratio test detector by using quantized data received from each SN is proposed to determine the presence or absence of the primary user signal. The Bhattacharyya distance (BD) of the cooperative sensing system is derived. Then, a quantizer design scheme by maximizing the BD that as the criterion function in an optimization problem with respect to the quantization thresholds is proposed. As nonlinear and high-dimensional of the objective function, a particle swarm optimization algorithm is employed to solve operating parameters for the quantizer. Furthermore, we derive the upper bound performance on cooperative energy detection (CED) in CSS. To validate the effectiveness of the proposed approach, The quantizer is compared with other schemes in terms of detection performance. Simulation results show that 2- or 3-bit quantization of the proposed approach achieves comparable performance to upper bound of CED without quantization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Axell, E., Leus, G., Larsson, E. G., & Poor, H. V. (2012). Spectrum sensing for cognitive radio: State-of-the-art and recent advances. IEEE Signal Process. Magazine, 29(3), 101–116.CrossRef Axell, E., Leus, G., Larsson, E. G., & Poor, H. V. (2012). Spectrum sensing for cognitive radio: State-of-the-art and recent advances. IEEE Signal Process. Magazine, 29(3), 101–116.CrossRef
2.
Zurück zum Zitat Liu, X., Jia, M., Na, Z., et al. (2018). Multi-modal cooperative spectrum sensing based on Dempster–Shafer fusion in 5G-based cognitive radio. IEEE Access, 6(99), 199–208.CrossRef Liu, X., Jia, M., Na, Z., et al. (2018). Multi-modal cooperative spectrum sensing based on Dempster–Shafer fusion in 5G-based cognitive radio. IEEE Access, 6(99), 199–208.CrossRef
3.
Zurück zum Zitat Akylidiz, I., Lo, B., & Balakrishan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, 4(1), 40–62.CrossRef Akylidiz, I., Lo, B., & Balakrishan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, 4(1), 40–62.CrossRef
4.
Zurück zum Zitat Sriharipriya, K. C., & Baskaran, K. (2018). Optimal number of cooperators in the cooperative spectrum sensing schemes. Circuits Systems & Signal Processing, 37(5), 1988–2000.MathSciNetMATHCrossRef Sriharipriya, K. C., & Baskaran, K. (2018). Optimal number of cooperators in the cooperative spectrum sensing schemes. Circuits Systems & Signal Processing, 37(5), 1988–2000.MathSciNetMATHCrossRef
5.
Zurück zum Zitat Zhu, S., Akofor, E., & Chen, B. (2013). Interactive distributed detection with conditionally independent observations. In Proceedings of IEEE wireless communications and networking conference (pp. 2531–2535). Shanghai. Zhu, S., Akofor, E., & Chen, B. (2013). Interactive distributed detection with conditionally independent observations. In Proceedings of IEEE wireless communications and networking conference (pp. 2531–2535). Shanghai.
6.
Zurück zum Zitat Yang, X., Niu, R., Masazade, E., & Varshney, P. (2013). Channel-aware tracking in multi-hop wireless sensor networks with quantized measurements. IEEE Transactions on Aerospace and Electronic Systems, 49(4), 2353–2368.CrossRef Yang, X., Niu, R., Masazade, E., & Varshney, P. (2013). Channel-aware tracking in multi-hop wireless sensor networks with quantized measurements. IEEE Transactions on Aerospace and Electronic Systems, 49(4), 2353–2368.CrossRef
7.
Zurück zum Zitat Gohain, P., & Chaudhari, S. (2017). Cooperative energy detection using Dempster–Shafer theory under noise uncertainties. In Proceedings of IEEE COMSNET (pp. 360–366). Bangalore. Gohain, P., & Chaudhari, S. (2017). Cooperative energy detection using Dempster–Shafer theory under noise uncertainties. In Proceedings of IEEE COMSNET (pp. 360–366). Bangalore.
8.
Zurück zum Zitat Thanh, N., & Koo, I. (2009). An enhanced cooperative spectrum sensing scheme based on evidence theory and reliability source evaluation in cognitive radio context. IEEE Communications Letters, 13(7), 492–494.CrossRef Thanh, N., & Koo, I. (2009). An enhanced cooperative spectrum sensing scheme based on evidence theory and reliability source evaluation in cognitive radio context. IEEE Communications Letters, 13(7), 492–494.CrossRef
9.
Zurück zum Zitat Boulogeorgos, A. A., Chatzidiamantis, N. D., & Karagiannidis, G. K. (2016). Spectrum sensing with multiple primary users over fading channels. IEEE Communications Letters, 20(7), 1457–1460. Boulogeorgos, A. A., Chatzidiamantis, N. D., & Karagiannidis, G. K. (2016). Spectrum sensing with multiple primary users over fading channels. IEEE Communications Letters, 20(7), 1457–1460.
10.
Zurück zum Zitat Boulogeorgos, A. A., Salameh, H. A. B., & Karagiannidis, G. K. (2017). Spectrum sensing in full-duplex cognitive radio networks under hardware imperfections. IEEE Transactions on Vehicular Technology, 66(3), 2072–2084.CrossRef Boulogeorgos, A. A., Salameh, H. A. B., & Karagiannidis, G. K. (2017). Spectrum sensing in full-duplex cognitive radio networks under hardware imperfections. IEEE Transactions on Vehicular Technology, 66(3), 2072–2084.CrossRef
11.
Zurück zum Zitat Boulogeorgos, A. A. A., & Karagiannidis, G. K. (2018). Energy detection in full-duplex systems with residual RF impairments over fading channels. IEEE Wireless Communications Letters, 7(2), 246–249.CrossRef Boulogeorgos, A. A. A., & Karagiannidis, G. K. (2018). Energy detection in full-duplex systems with residual RF impairments over fading channels. IEEE Wireless Communications Letters, 7(2), 246–249.CrossRef
12.
Zurück zum Zitat Cacciapuoti, A., Caleffi, M., Izzo, D., & Paura, L. (2011). Cooperative spectrum sensing techniques with temporal dispersive reporting channels. IEEE Transactions on Wireless Communications, 10(10), 3392–3402.CrossRef Cacciapuoti, A., Caleffi, M., Izzo, D., & Paura, L. (2011). Cooperative spectrum sensing techniques with temporal dispersive reporting channels. IEEE Transactions on Wireless Communications, 10(10), 3392–3402.CrossRef
13.
Zurück zum Zitat Cacciapuoti, A. S., Caleffi, M., & Paura, L. (2010). Widely linear cooperative spectrum sensing for cognitive radio networks. In IEEE global telecommunications conference (pp. 1–5). Florida. Cacciapuoti, A. S., Caleffi, M., & Paura, L. (2010). Widely linear cooperative spectrum sensing for cognitive radio networks. In IEEE global telecommunications conference (pp. 1–5). Florida.
14.
Zurück zum Zitat Xin, L., Min, J., Xueyan, Z., & et al (2018). A novel multi-channel internet of things based on dynamic spectrum sharing in 5G communication. IEEE Internet of Things Journal, 14(8), 1–9. Xin, L., Min, J., Xueyan, Z., & et al (2018). A novel multi-channel internet of things based on dynamic spectrum sharing in 5G communication. IEEE Internet of Things Journal, 14(8), 1–9.
15.
Zurück zum Zitat Liu, X., Li, F., & Na, Z. (2017). Optimal resource allocation in simultaneous cooperative spectrum sensing and energy harvesting for multichannel cognitive radio. IEEE Access, 5, 3801–3812.CrossRef Liu, X., Li, F., & Na, Z. (2017). Optimal resource allocation in simultaneous cooperative spectrum sensing and energy harvesting for multichannel cognitive radio. IEEE Access, 5, 3801–3812.CrossRef
16.
Zurück zum Zitat Liu, X., Zhang, X., Jia, M., et al. (2018). 5G-based green broadband communication system design with simultaneous wireless information and power transfer. Physical Communication, 28, 130–137.CrossRef Liu, X., Zhang, X., Jia, M., et al. (2018). 5G-based green broadband communication system design with simultaneous wireless information and power transfer. Physical Communication, 28, 130–137.CrossRef
17.
Zurück zum Zitat Cacciapuoti, S. A., Caleffi, M., et al. (2013). Decision maker approaches for cooperative spectrum sensing: participate; or not participate in sensing? IEEE Transactions on Wireless Communications, 12(5), 2445–2457.CrossRef Cacciapuoti, S. A., Caleffi, M., et al. (2013). Decision maker approaches for cooperative spectrum sensing: participate; or not participate in sensing? IEEE Transactions on Wireless Communications, 12(5), 2445–2457.CrossRef
18.
Zurück zum Zitat Cacciapuoti, A. S., Akyildiz, I. F., & Paura, L. (2012). Correlation-aware user selection for cooperative spectrum sensing in cognitive radio ad hoc networks. IEEE Journal on Selected Areas in Communications, 30(2), 297–306.CrossRef Cacciapuoti, A. S., Akyildiz, I. F., & Paura, L. (2012). Correlation-aware user selection for cooperative spectrum sensing in cognitive radio ad hoc networks. IEEE Journal on Selected Areas in Communications, 30(2), 297–306.CrossRef
19.
Zurück zum Zitat Liang, Y.-C., Zeng, Y., Peh, E. C., & Hoang, A. T. (2008). Sensing throughput tradeoff in cognitive radio networks. IEEE Transactions on Wireless Communications, 7(4), 1326–1337.CrossRef Liang, Y.-C., Zeng, Y., Peh, E. C., & Hoang, A. T. (2008). Sensing throughput tradeoff in cognitive radio networks. IEEE Transactions on Wireless Communications, 7(4), 1326–1337.CrossRef
20.
Zurück zum Zitat Nguyen-Thanh, N., & Koo, I. (2011). Evidence-theory-based cooperative spectrum sensing with efficient quantization method in cognitive radio. IEEE Transactions on Vehicular Technology, 60(1), 185–195.CrossRef Nguyen-Thanh, N., & Koo, I. (2011). Evidence-theory-based cooperative spectrum sensing with efficient quantization method in cognitive radio. IEEE Transactions on Vehicular Technology, 60(1), 185–195.CrossRef
21.
Zurück zum Zitat Oh, D., Lee, H., & Lee, H. Y. (2010). Linear hard decision combining for cooperative spectrum sensing in cognitive radio systems. In Proceedings of 71nd IEEE vehicular technology conference (pp. 1–5). Taipei. Oh, D., Lee, H., & Lee, H. Y. (2010). Linear hard decision combining for cooperative spectrum sensing in cognitive radio systems. In Proceedings of 71nd IEEE vehicular technology conference (pp. 1–5). Taipei.
22.
Zurück zum Zitat Althunibat, S., Palacios, R., & Granelli, F. (2012). Performance optimisation of soft and hard spectrum sensing schemes in cognitive radio. IEEE Communications Letters, 16(7), 998–1001.CrossRef Althunibat, S., Palacios, R., & Granelli, F. (2012). Performance optimisation of soft and hard spectrum sensing schemes in cognitive radio. IEEE Communications Letters, 16(7), 998–1001.CrossRef
23.
Zurück zum Zitat Althunibat, S., & Granelli, F. (2014). Energy efficiency analysis of soft and hard cooperative spectrum sensing schemes in cognitive radio networks. In Proceedings of 79th IEEE vehicular technology conference (pp. 18–21). Seoul. Althunibat, S., & Granelli, F. (2014). Energy efficiency analysis of soft and hard cooperative spectrum sensing schemes in cognitive radio networks. In Proceedings of 79th IEEE vehicular technology conference (pp. 18–21). Seoul.
24.
Zurück zum Zitat Ma, J., Zhao, G., & Li, Y. G. (2008). Soft combination and detection for cooperative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 7(11), 4502–4507.CrossRef Ma, J., Zhao, G., & Li, Y. G. (2008). Soft combination and detection for cooperative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 7(11), 4502–4507.CrossRef
25.
Zurück zum Zitat Nguyen-Thanh, N., Ciblat, P., Maleki, S., & Nguyen, V.-T. (2015). How many bits should be reported in quantized cooperative spectrum sensing? IEEE Wireless Communications Letters, 4(5), 465–468.CrossRef Nguyen-Thanh, N., Ciblat, P., Maleki, S., & Nguyen, V.-T. (2015). How many bits should be reported in quantized cooperative spectrum sensing? IEEE Wireless Communications Letters, 4(5), 465–468.CrossRef
26.
Zurück zum Zitat Verma, P., & Singh, B. (2017). On the decision fusion for cooperative spectrum sensing in cognitive radio networks. Wireless Networks, 23(7), 2253–2262.CrossRef Verma, P., & Singh, B. (2017). On the decision fusion for cooperative spectrum sensing in cognitive radio networks. Wireless Networks, 23(7), 2253–2262.CrossRef
27.
Zurück zum Zitat Nhan, N.-T., & Insoo, K. (2011). Log-likelihood ratio optimal quantizer for cooperative spectrum sensing in cognitive radio. IEEE Communications Letters, 15(3), 317–319.CrossRef Nhan, N.-T., & Insoo, K. (2011). Log-likelihood ratio optimal quantizer for cooperative spectrum sensing in cognitive radio. IEEE Communications Letters, 15(3), 317–319.CrossRef
28.
Zurück zum Zitat Tarighati, A., & Jalden, J. (2016). Optimality of rate balancing in wireless sensor networks. IEEE Transactions on Signal Processing, 64(14), 3735–3794.MathSciNetMATHCrossRef Tarighati, A., & Jalden, J. (2016). Optimality of rate balancing in wireless sensor networks. IEEE Transactions on Signal Processing, 64(14), 3735–3794.MathSciNetMATHCrossRef
29.
Zurück zum Zitat Mhanna, M., Duhamel, P., & Piantanida, P. (2016). Quantization for distributed binary detection under secrecy constraints. In Proceedings of IEEE international conference on communications (pp. 1–6). Kuala Lumpur. Mhanna, M., Duhamel, P., & Piantanida, P. (2016). Quantization for distributed binary detection under secrecy constraints. In Proceedings of IEEE international conference on communications (pp. 1–6). Kuala Lumpur.
30.
Zurück zum Zitat Tarighati, A., Gross, J., & Jalden, J. (2017). Decentralized hypothesis testing in energy harvesting wireless sensor networks. IEEE Transactions on Signal Processing, 65(18), 4862–4873.MathSciNetMATHCrossRef Tarighati, A., Gross, J., & Jalden, J. (2017). Decentralized hypothesis testing in energy harvesting wireless sensor networks. IEEE Transactions on Signal Processing, 65(18), 4862–4873.MathSciNetMATHCrossRef
31.
Zurück zum Zitat Shin, I., Lee, W., Kang, J., Kang, J., & Al-Araji, S. (2015). Quantization bit allocation for reporting-throughput tradeoff in cooperative cognitive radio networks. In Proceedings of IEEE MILCOM (pp. 233–237). Tampa. Shin, I., Lee, W., Kang, J., Kang, J., & Al-Araji, S. (2015). Quantization bit allocation for reporting-throughput tradeoff in cooperative cognitive radio networks. In Proceedings of IEEE MILCOM (pp. 233–237). Tampa.
32.
Zurück zum Zitat Bastami, B. A., & Saberinia, E. (2013). A practical multibit data combining strategy for cooperative spectrum sensing. IEEE Transactions on Vehicular Technology, 62(1), 384–389.CrossRef Bastami, B. A., & Saberinia, E. (2013). A practical multibit data combining strategy for cooperative spectrum sensing. IEEE Transactions on Vehicular Technology, 62(1), 384–389.CrossRef
33.
Zurück zum Zitat Ejaz, W., Hattab, G., Attia, T., Ibnkahla, M., Abdelkefi, F., & Siala, M. (2016). Joint quantization and confidence-based generalized combining scheme for cooperative spectrum sensing. IEEE Systems Journal, 12(2), 1–12. Ejaz, W., Hattab, G., Attia, T., Ibnkahla, M., Abdelkefi, F., & Siala, M. (2016). Joint quantization and confidence-based generalized combining scheme for cooperative spectrum sensing. IEEE Systems Journal, 12(2), 1–12.
34.
Zurück zum Zitat Berisha, V., Wisler, A., Hero, A. O., & Spanias, A. (2016). Empirically estimable classification bounds based on a nonparametric divergence measure. IEEE Transactions on Signal Processing, 64(3), 580–591.MathSciNetMATHCrossRef Berisha, V., Wisler, A., Hero, A. O., & Spanias, A. (2016). Empirically estimable classification bounds based on a nonparametric divergence measure. IEEE Transactions on Signal Processing, 64(3), 580–591.MathSciNetMATHCrossRef
35.
Zurück zum Zitat Kailath, T. (1967). The divergence and Bhattacharyya distance measures in signal selection. IEEE Trans. Commun. Technol., 15(1), 52–60.CrossRef Kailath, T. (1967). The divergence and Bhattacharyya distance measures in signal selection. IEEE Trans. Commun. Technol., 15(1), 52–60.CrossRef
36.
Zurück zum Zitat Chernoff, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. The Annals of Mathematical Statistics, 23(4), 493–507.MathSciNetMATHCrossRef Chernoff, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. The Annals of Mathematical Statistics, 23(4), 493–507.MathSciNetMATHCrossRef
37.
Zurück zum Zitat Cover, T. M., & Thomas, J. A. (2012). Elements of information theory. Hoboken: Wiley.MATH Cover, T. M., & Thomas, J. A. (2012). Elements of information theory. Hoboken: Wiley.MATH
39.
Zurück zum Zitat Jiang, M., Luo, Y. P., & Yang, S. Y. (2007). Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Information Processing Letter, 102(1), 8–16.MathSciNetMATHCrossRef Jiang, M., Luo, Y. P., & Yang, S. Y. (2007). Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Information Processing Letter, 102(1), 8–16.MathSciNetMATHCrossRef
40.
Zurück zum Zitat Gao, F., Guo, L., Li, H., et al. (2014). Quantizer design for distributed GLRT detection of weak signal in wireless sensor networks. IEEE Transactions on Wireless Communications, 14(4), 2032–2042.CrossRef Gao, F., Guo, L., Li, H., et al. (2014). Quantizer design for distributed GLRT detection of weak signal in wireless sensor networks. IEEE Transactions on Wireless Communications, 14(4), 2032–2042.CrossRef
41.
Zurück zum Zitat Duarte, C., Barner, K. E., & Goossen, K. (2016). Design of IIR multi-notch filters based on polynomially-represented squared frequency response. IEEE Transactions on Signal Processing, 64(10), 2613–2623.MathSciNetMATHCrossRef Duarte, C., Barner, K. E., & Goossen, K. (2016). Design of IIR multi-notch filters based on polynomially-represented squared frequency response. IEEE Transactions on Signal Processing, 64(10), 2613–2623.MathSciNetMATHCrossRef
Metadaten
Titel
Bhattacharyya distance criterion based multibit quantizer design for cooperative spectrum sensing in cognitive radio networks
verfasst von
Yuanhua Fu
Zhiming He
Publikationsdatum
06.04.2019
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 5/2019
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-019-01986-9

Weitere Artikel der Ausgabe 5/2019

Wireless Networks 5/2019 Zur Ausgabe

Neuer Inhalt