Skip to main content
Erschienen in: Wireless Networks 4/2020

23.08.2019

Genetic algorithm based adaptive offloading for improving IoT device communication efficiency

verfasst von: Azham Hussain, S. V. Manikanthan, T. Padmapriya, Mahendran Nagalingam

Erschienen in: Wireless Networks | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Improving the communication of Internet of Things (IoT) network is a challenging task as it connects a wide-range of heterogeneous mobile devices. With an extended support from cloud network, the mobile IoT devices demand flexibility and scalability in communication. Increase in density of communicating devices and user request, traffic handling and delay-less service are unenviable. This manuscript introduces genetic algorithm based adaptive offloading (GA-OA) for effective traffic handling in IoT-infrastructure-cloud environment. The process of offloading is designed to mitigate unnecessary delays in request process and to improve the success rate of the IoT requests. The fitness process of GA is distributed among the gateways and infrastructure to handle requests satisfying different communication metrics. The process of GA balances between the optimal and sub-optimal solutions generated to improve the rate of request response. Experimental results prove the consistency of the proposed GA-OA by improving request success ratio, achieving lesser complexity, delay and processing time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys Tutorials,17(4), 2347–2376.CrossRef Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys Tutorials,17(4), 2347–2376.CrossRef
2.
Zurück zum Zitat Deng, S., Huang, L., Wu, H., Tan, W., Taheri, J., Zomaya, A. Y., et al. (2016). Toward mobile service computing: opportunities and challenges. IEEE Cloud Computing,3(4), 32–41.CrossRef Deng, S., Huang, L., Wu, H., Tan, W., Taheri, J., Zomaya, A. Y., et al. (2016). Toward mobile service computing: opportunities and challenges. IEEE Cloud Computing,3(4), 32–41.CrossRef
3.
Zurück zum Zitat Ning, H., & Hu, S. (2012). Technology classification, industry, and education for Future Internet of Things. International Journal of Communication Systems,25(9), 1230–1241.CrossRef Ning, H., & Hu, S. (2012). Technology classification, industry, and education for Future Internet of Things. International Journal of Communication Systems,25(9), 1230–1241.CrossRef
4.
Zurück zum Zitat Haw, R., Alarm, M., & Hong, C. (2014). A context-aware content delivery framework for QoS in mobile cloud. In Proceedings of IEEE NOMS (pp. 1–6). Haw, R., Alarm, M., & Hong, C. (2014). A context-aware content delivery framework for QoS in mobile cloud. In Proceedings of IEEE NOMS (pp. 1–6).
5.
Zurück zum Zitat Munoz, R., Vilalta, R., Yoshikane, N., Casellas, R., Martinez, R., Tsuritani, T., et al. (2018). Integration of IoT, transport SDN, and edge/cloud computing for dynamic distribution of IoT analytics and efficient use of network resources. Journal of Lightwave Technology,36(7), 1420–1428.CrossRef Munoz, R., Vilalta, R., Yoshikane, N., Casellas, R., Martinez, R., Tsuritani, T., et al. (2018). Integration of IoT, transport SDN, and edge/cloud computing for dynamic distribution of IoT analytics and efficient use of network resources. Journal of Lightwave Technology,36(7), 1420–1428.CrossRef
6.
Zurück zum Zitat Lin, J.-W., Chen, C.-H., & Chang, J. (2013). Qos-aware data replication for data-intensive applications in cloud computing systems. IEEE Transactions on Cloud Computing,1(1), 101–115.CrossRef Lin, J.-W., Chen, C.-H., & Chang, J. (2013). Qos-aware data replication for data-intensive applications in cloud computing systems. IEEE Transactions on Cloud Computing,1(1), 101–115.CrossRef
7.
Zurück zum Zitat Deng, Y., Chen, Z., Zhang, D., & Zhao, M. (2018). Workload scheduling toward worst-case delay and optimal utility for single-hop Fog-IoT architecture. IET Communications,12(17), 2164–2173.CrossRef Deng, Y., Chen, Z., Zhang, D., & Zhao, M. (2018). Workload scheduling toward worst-case delay and optimal utility for single-hop Fog-IoT architecture. IET Communications,12(17), 2164–2173.CrossRef
8.
Zurück zum Zitat Mubeen, S., Nikolaidis, P., Didic, A., Pei-Breivold, H., Sandstrom, K., & Behnam, M. (2017). Delay mitigation in offloaded cloud controllers in industrial IoT. IEEE Access,5, 4418–4430.CrossRef Mubeen, S., Nikolaidis, P., Didic, A., Pei-Breivold, H., Sandstrom, K., & Behnam, M. (2017). Delay mitigation in offloaded cloud controllers in industrial IoT. IEEE Access,5, 4418–4430.CrossRef
9.
Zurück zum Zitat Yousefpour, A., Ishigaki, G., Gour, R., & Jue, J. P. (2018). On reducing IoT service delay via fog offloading. IEEE Internet of Things Journal,5(2), 998–1010.CrossRef Yousefpour, A., Ishigaki, G., Gour, R., & Jue, J. P. (2018). On reducing IoT service delay via fog offloading. IEEE Internet of Things Journal,5(2), 998–1010.CrossRef
10.
Zurück zum Zitat Shah-Mansouri, H., & Wong, V. W. S. (2018). Hierarchical fog-cloud computing for IoT systems: A computation offloading game. IEEE Internet of Things Journal,5(4), 3246–3257.CrossRef Shah-Mansouri, H., & Wong, V. W. S. (2018). Hierarchical fog-cloud computing for IoT systems: A computation offloading game. IEEE Internet of Things Journal,5(4), 3246–3257.CrossRef
11.
Zurück zum Zitat Guo, H., Liu, J., & Qin, H. (2018). Collaborative mobile edge computation offloading for IoT over fiber-wireless networks. IEEE Network,32(1), 66–71.CrossRef Guo, H., Liu, J., & Qin, H. (2018). Collaborative mobile edge computation offloading for IoT over fiber-wireless networks. IEEE Network,32(1), 66–71.CrossRef
12.
Zurück zum Zitat Guo, H., Liu, J., Zhang, J., Sun, W., & Kato, N. (2018). Mobile-edge computation offloading for ultradense IoT networks. IEEE Internet of Things Journal,5(6), 4977–4988.CrossRef Guo, H., Liu, J., Zhang, J., Sun, W., & Kato, N. (2018). Mobile-edge computation offloading for ultradense IoT networks. IEEE Internet of Things Journal,5(6), 4977–4988.CrossRef
13.
Zurück zum Zitat Dao, N.-N., Vu, D.-N., Na, W., Kim, J., & Cho, S. (2018). SGCO: Stabilized green crosshaul orchestration for dense IoT offloading services. IEEE Journal on Selected Areas in Communications,36(11), 2538–2548.CrossRef Dao, N.-N., Vu, D.-N., Na, W., Kim, J., & Cho, S. (2018). SGCO: Stabilized green crosshaul orchestration for dense IoT offloading services. IEEE Journal on Selected Areas in Communications,36(11), 2538–2548.CrossRef
14.
Zurück zum Zitat Lyu, X., Tian, H., Jiang, L., Vinel, A., Maharjan, S., Gjessing, S., et al. (2018). Selective offloading in mobile edge computing for the green Internet of Things. IEEE Network,32(1), 54–60.CrossRef Lyu, X., Tian, H., Jiang, L., Vinel, A., Maharjan, S., Gjessing, S., et al. (2018). Selective offloading in mobile edge computing for the green Internet of Things. IEEE Network,32(1), 54–60.CrossRef
15.
Zurück zum Zitat Lee, H.-S., & Lee, J.-W. (2018). Task offloading in heterogeneous mobile cloud computing: Modeling, analysis, and cloudlet deployment. IEEE Access,6, 14908–14925.CrossRef Lee, H.-S., & Lee, J.-W. (2018). Task offloading in heterogeneous mobile cloud computing: Modeling, analysis, and cloudlet deployment. IEEE Access,6, 14908–14925.CrossRef
16.
Zurück zum Zitat Zhang, C., Zhao, H., & Deng, S. (2018). A density-based offloading strategy for IoT devices in edge computing systems. IEEE Access,6, 73520–73530.CrossRef Zhang, C., Zhao, H., & Deng, S. (2018). A density-based offloading strategy for IoT devices in edge computing systems. IEEE Access,6, 73520–73530.CrossRef
17.
Zurück zum Zitat Hasan, R., Hossain, M., & Khan, R. (2018). Aura: An incentive-driven ad-hoc IoT cloud framework for proximal mobile computation offloading. Future Generation Computer Systems,86, 821–835.CrossRef Hasan, R., Hossain, M., & Khan, R. (2018). Aura: An incentive-driven ad-hoc IoT cloud framework for proximal mobile computation offloading. Future Generation Computer Systems,86, 821–835.CrossRef
18.
Zurück zum Zitat Sharafeddine, S., & Farhat, O. (2018). A proactive scalable approach for reliable cluster formation in wireless networks with D2D offloading. Ad Hoc Networks,77, 42–53.CrossRef Sharafeddine, S., & Farhat, O. (2018). A proactive scalable approach for reliable cluster formation in wireless networks with D2D offloading. Ad Hoc Networks,77, 42–53.CrossRef
19.
Zurück zum Zitat Lee, D., & Lee, H. (2018). IoT service classification and clustering for integration of IoT service platforms. The Journal of Supercomputing,74(12), 6859–6875.CrossRef Lee, D., & Lee, H. (2018). IoT service classification and clustering for integration of IoT service platforms. The Journal of Supercomputing,74(12), 6859–6875.CrossRef
20.
Zurück zum Zitat Elbamby, M. S., Bennis, M., & Saad, W. (2017). Proactive edge computing in latency-constrained fog networks. In 2017 European conference on networks and communications (EuCNC). Elbamby, M. S., Bennis, M., & Saad, W. (2017). Proactive edge computing in latency-constrained fog networks. In 2017 European conference on networks and communications (EuCNC).
21.
Zurück zum Zitat Kim, S., & Kim, D.-Y. (2017). Efficient data-forwarding method in delay-tolerant P2P networking for IoT services. Peer-to-Peer Networking and Applications,11(6), 1176–1185.CrossRef Kim, S., & Kim, D.-Y. (2017). Efficient data-forwarding method in delay-tolerant P2P networking for IoT services. Peer-to-Peer Networking and Applications,11(6), 1176–1185.CrossRef
22.
Zurück zum Zitat Kim, H.-Y. (2017). A load balancing scheme with Loadbot in IoT networks. The Journal of Supercomputing,74(3), 1215–1226.CrossRef Kim, H.-Y. (2017). A load balancing scheme with Loadbot in IoT networks. The Journal of Supercomputing,74(3), 1215–1226.CrossRef
Metadaten
Titel
Genetic algorithm based adaptive offloading for improving IoT device communication efficiency
verfasst von
Azham Hussain
S. V. Manikanthan
T. Padmapriya
Mahendran Nagalingam
Publikationsdatum
23.08.2019
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 4/2020
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-019-02121-4

Weitere Artikel der Ausgabe 4/2020

Wireless Networks 4/2020 Zur Ausgabe

Neuer Inhalt