Skip to main content
Erschienen in: Wireless Personal Communications 2/2015

01.07.2015

Absolute Value Cumulating Based Spectrum Sensing with Laplacian Noise in Cognitive Radio Networks

verfasst von: Rui Gao, Zan Li, Husheng Li, Bo Ai

Erschienen in: Wireless Personal Communications | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spectrum sensing in the presence of non-Gaussian noise is a challenging problem for cognitive radio networks. However, there are few detectors that can work well in this case. Motivated by these, we propose a spectrum sensing algorithm via absolute value cumulating (AVC) with Laplacian noise. The AVC makes full use of the stochastic properties of Laplacian noise and the central limit theorem. Then the statistic of the proposed detector is derived. A performance analysis about the influence of noise uncertainty in the low signal-to-noise ratio regime is also given, which shows that the SNR Wall of the AVC is half of that of the energy detection. The algorithm are further introduced into existing cooperative spectrum sensing scheme. Simulation results validate the algorithm, and show that the proposed algorithm can improve the performance of existing algorithm at least 3 dB with Laplacian noise.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.CrossRef Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.CrossRef
2.
Zurück zum Zitat Zheng, S., Kam, P., Liang, Y., et al. (2013). Spectrum sensing for digital primary signals in cognitive radio: A Bayesian approach for maximizing spectrum utilization. IEEE Transaction on Wireless Communications, 12(4), 1774–1782.CrossRef Zheng, S., Kam, P., Liang, Y., et al. (2013). Spectrum sensing for digital primary signals in cognitive radio: A Bayesian approach for maximizing spectrum utilization. IEEE Transaction on Wireless Communications, 12(4), 1774–1782.CrossRef
3.
Zurück zum Zitat Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communication, 6(4), 13–18.CrossRef Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communication, 6(4), 13–18.CrossRef
4.
Zurück zum Zitat Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal of Selected Areas Communication, 23, 201–220.CrossRef Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal of Selected Areas Communication, 23, 201–220.CrossRef
5.
Zurück zum Zitat Gavrilovska, L., & Atanasovski, V. (2011). Spectrum sensing framework for cognitive radio networks. Wireless Personal Communications, 59, 447–469.CrossRef Gavrilovska, L., & Atanasovski, V. (2011). Spectrum sensing framework for cognitive radio networks. Wireless Personal Communications, 59, 447–469.CrossRef
6.
Zurück zum Zitat Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communication Surveys and Tutorials, 11(1), 116–130. First Quarter.CrossRef Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communication Surveys and Tutorials, 11(1), 116–130. First Quarter.CrossRef
7.
Zurück zum Zitat Rif-Pous, H., Blasco, M. J., & Garrigues, C. (2012). Review of robust cooperative spectrum sensing techniques for cognitive radio networks. Wireless Personal Communications, 67, 175–198.CrossRef Rif-Pous, H., Blasco, M. J., & Garrigues, C. (2012). Review of robust cooperative spectrum sensing techniques for cognitive radio networks. Wireless Personal Communications, 67, 175–198.CrossRef
8.
Zurück zum Zitat Gong, Shimin, Wang, Ping, & Huang, Jianwei. (2013). Robust performance of spectrum sensing in cognitive radio networks. IEEE Transaction on Wireless Communications, 12(5), 2217–2227.CrossRef Gong, Shimin, Wang, Ping, & Huang, Jianwei. (2013). Robust performance of spectrum sensing in cognitive radio networks. IEEE Transaction on Wireless Communications, 12(5), 2217–2227.CrossRef
9.
Zurück zum Zitat Sedighi, Saeid, Taherpour, Abbas, & Sala, Josep. (2013). Spectrum sensing using correlated receiving multiple antennas in cognitive radios. IEEE Transaction on Wireless Communications, 12(11), 5754–5766.CrossRef Sedighi, Saeid, Taherpour, Abbas, & Sala, Josep. (2013). Spectrum sensing using correlated receiving multiple antennas in cognitive radios. IEEE Transaction on Wireless Communications, 12(11), 5754–5766.CrossRef
10.
Zurück zum Zitat Chung, Wei-Ho. (2013). Sequential likelihood ratio test under incomplete signal model for spectrum sensing. IEEE Transaction on Wireless Communications, 12(2), 494–503.CrossRef Chung, Wei-Ho. (2013). Sequential likelihood ratio test under incomplete signal model for spectrum sensing. IEEE Transaction on Wireless Communications, 12(2), 494–503.CrossRef
11.
Zurück zum Zitat Axell, E., Leus, G., Larsson, E. G., & Poor, H. V. (2012). Spectrum sensing for cognitive radio: State-of-the-art and recent advances. IEEE Signal Processing Magazine, 29(3), 101–116.CrossRef Axell, E., Leus, G., Larsson, E. G., & Poor, H. V. (2012). Spectrum sensing for cognitive radio: State-of-the-art and recent advances. IEEE Signal Processing Magazine, 29(3), 101–116.CrossRef
12.
Zurück zum Zitat Akyildiz, I. F., Lo, B. F., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, 4(1), 40–62.CrossRef Akyildiz, I. F., Lo, B. F., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, 4(1), 40–62.CrossRef
13.
Zurück zum Zitat Bansal, G., Hossain, M., Kaligineedi, P., et al. (2007). Some research issues in cognitive radio networks. In AFRICON, IEEE. Windhoek, pp. 1–7. Bansal, G., Hossain, M., Kaligineedi, P., et al. (2007). Some research issues in cognitive radio networks. In AFRICON, IEEE. Windhoek, pp. 1–7.
14.
Zurück zum Zitat Middleton, D. (1974, 1976). Statistical physical models of man-made radio noise parts I and II. In US department of commerce office telecommunication, April 1974, 1976. Middleton, D. (1974, 1976). Statistical physical models of man-made radio noise parts I and II. In US department of commerce office telecommunication, April 1974, 1976.
15.
Zurück zum Zitat Taher, T., Misurac, M., LoCicero, J., et al. (2008). Microwave oven signal interference mitigation for Wi-Fi communication systems. In Proceedings of IEEE consumer communications networking conference, Jan. 2008. Taher, T., Misurac, M., LoCicero, J., et al. (2008). Microwave oven signal interference mitigation for Wi-Fi communication systems. In Proceedings of IEEE consumer communications networking conference, Jan. 2008.
16.
Zurück zum Zitat Zhu, X., Champagne, B., & Zhu, W. P. (2014). Rao test based cooperative spectrum sensing for cognitive radios in non-Gaussian noise. Signal Processing, 97, 183–194.CrossRef Zhu, X., Champagne, B., & Zhu, W. P. (2014). Rao test based cooperative spectrum sensing for cognitive radios in non-Gaussian noise. Signal Processing, 97, 183–194.CrossRef
17.
Zurück zum Zitat Tan, F., Song, X., Leung, C., et al. (2012). Collaborative spectrum sensing in a cognitive radio system with laplacian noise. IEEE Communications Letters, 16(10), 1691–1694.CrossRef Tan, F., Song, X., Leung, C., et al. (2012). Collaborative spectrum sensing in a cognitive radio system with laplacian noise. IEEE Communications Letters, 16(10), 1691–1694.CrossRef
18.
Zurück zum Zitat Li, Q., & Li, Z. (2014). A novel sequential spectrum sensing method in cognitive radio using suprathreshold stochastic resonance. IEEE Transaction on Vehicular Technology, 63(4), 1717–1725. Li, Q., & Li, Z. (2014). A novel sequential spectrum sensing method in cognitive radio using suprathreshold stochastic resonance. IEEE Transaction on Vehicular Technology, 63(4), 1717–1725.
19.
Zurück zum Zitat Li, Q., Li, Z., Shen, J., et al. (2012). A novel spectrum sensing method in cognitive radio based on suprathreshold stochastic resonance. In IEEE international conference on communications, ICC, pp. 4426–4430. Li, Q., Li, Z., Shen, J., et al. (2012). A novel spectrum sensing method in cognitive radio based on suprathreshold stochastic resonance. In IEEE international conference on communications, ICC, pp. 4426–4430.
20.
Zurück zum Zitat Zahabi, S. J., & Tadaion, A. A. (2010). Local spectrum sensing in non-Gaussian noise. In IEEE 17th international conference on telecommunications, ICT. Zahabi, S. J., & Tadaion, A. A. (2010). Local spectrum sensing in non-Gaussian noise. In IEEE 17th international conference on telecommunications, ICT.
21.
Zurück zum Zitat Unnikrishnan, J., & Veeravalli, V. V. (2008). Cooperative sensing for primary detection in cognitive radio. IEEE Journal Selected Topics Signal Process, 2(1), 18–27.CrossRef Unnikrishnan, J., & Veeravalli, V. V. (2008). Cooperative sensing for primary detection in cognitive radio. IEEE Journal Selected Topics Signal Process, 2(1), 18–27.CrossRef
22.
Zurück zum Zitat Tandra, R., & Sahai, A. (2008). SNR walls for signal detection. IEEE Journal Selected Topics Signal Process., 2(1), 4–17.CrossRef Tandra, R., & Sahai, A. (2008). SNR walls for signal detection. IEEE Journal Selected Topics Signal Process., 2(1), 4–17.CrossRef
23.
Zurück zum Zitat Cabric, D., Mishra, S. M., & Brodersen, R. W. (2004). Implementation issues in spectrum sensing for cognitive radios. In Proceedings of asilomar conference on signals, systems and computers, vol. 1, Pacific Grove, California, pp. 772–776. Cabric, D., Mishra, S. M., & Brodersen, R. W. (2004). Implementation issues in spectrum sensing for cognitive radios. In Proceedings of asilomar conference on signals, systems and computers, vol. 1, Pacific Grove, California, pp. 772–776.
Metadaten
Titel
Absolute Value Cumulating Based Spectrum Sensing with Laplacian Noise in Cognitive Radio Networks
verfasst von
Rui Gao
Zan Li
Husheng Li
Bo Ai
Publikationsdatum
01.07.2015
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2015
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-015-2457-4

Weitere Artikel der Ausgabe 2/2015

Wireless Personal Communications 2/2015 Zur Ausgabe

Neuer Inhalt