Skip to main content
Erschienen in: Wireless Personal Communications 4/2016

20.06.2016

NADS: Neighbor Assisted Deployment Scheme for Optimal Placement of Sensor Nodes to Achieve Blanket Coverage in Wireless Sensor Network

verfasst von: Vikrant Sharma, R. B. Patel, H. S. Bhadauria, Devendra Prasad

Erschienen in: Wireless Personal Communications | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sensor Node (SN) is a vital component in any automated system. It is an electro-chemical or electro-mechanical device designed to observe the specific changes occurring in its vicinity. Wireless Sensor Network (WSN) is a system formed by the group of wirelessly connected SNs which are deployed at distinct geographical locations within a candidate region. Performance of any WSN in terms of connectivity, coverage and life mainly depends on the distribution of SNs. In this paper, we propose a Neighbor Assisted Deployment Scheme (NADS) to uniformly distribute the randomly spread Mobile Sensor Nodes (MSNs) within a candidate region. Entire candidate region is divided into Square Sub-Regions (SSRs) which are further divided into regular hexagons and center of these hexagons forms the Desired Locations (DLs) for placement of MSNs. NADS uses 3-phase incremental approach for optimal placement of MSNs. Resultant of each phase forms the infrastructure to assist the placement of remaining unplaced MSNs. In each phase MSNs communicate locally with each other to elect the most appropriate one among them to relocate to the nearest DL. Factors such as dropping height, wind speed, parachute size, battery size and MSN weight are considered to determine the area approachable by any dropped MSN. This limits the number of computations performed at each MSN, regardless of the size of the candidate region. The scheme is simulated and a comparative study is made with some existing systems. It is observed that NADS is realistic, scalable and yields better performance in terms of coverage, connectivity, setup-time and energy-efficiency with minimum number of MSNs as compared to existing schemes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Agarwal, D., & Zeng, Q. A. (2010). Introduction to wireless and mobile systems. Boston: Cengage Learning. Agarwal, D., & Zeng, Q. A. (2010). Introduction to wireless and mobile systems. Boston: Cengage Learning.
2.
Zurück zum Zitat Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.CrossRef Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.CrossRef
3.
Zurück zum Zitat Welsh, M., Myung, D., Gaynor, M., & Moulton, S. (2003). Resuscitation monitoring with a wireless sensor network. Journal of American Heart Association, 108(17), A1037–A1037. Welsh, M., Myung, D., Gaynor, M., & Moulton, S. (2003). Resuscitation monitoring with a wireless sensor network. Journal of American Heart Association, 108(17), A1037–A1037.
4.
Zurück zum Zitat Wheeler, A. (2007). Commercial applications of wireless sensor networks using ZigBee. Communications Magazine, IEEE, 45(4), 70–77.CrossRef Wheeler, A. (2007). Commercial applications of wireless sensor networks using ZigBee. Communications Magazine, IEEE, 45(4), 70–77.CrossRef
5.
Zurück zum Zitat Mainwaring, A., Polastre, J., Szewczyk, R., & Culler, D. (2002). Wireless sensor networks for habitat monitoring. In Proceedings of the 1st ACM international workshop on wireless sensor networks and applications, New York, pp. 88–97. Mainwaring, A., Polastre, J., Szewczyk, R., & Culler, D. (2002). Wireless sensor networks for habitat monitoring. In Proceedings of the 1st ACM international workshop on wireless sensor networks and applications, New York, pp. 88–97.
6.
Zurück zum Zitat Szewczyk, R., Polastre, J., Mainwaring, A., & Culler, D. (2004). Lessons from a Sensor Network Expedition. In proceedings of First European Workshop, Berlin, pp. 307–322. Szewczyk, R., Polastre, J., Mainwaring, A., & Culler, D. (2004). Lessons from a Sensor Network Expedition. In proceedings of First European Workshop, Berlin, pp. 307–322.
7.
Zurück zum Zitat Felamban, M., Shihada, B., & Jamshaid, K. (2013). Optimal node placement in underwater wireless sensor networks. In Proceedings of 27th international conference on advanced information networking and applications (IEEE), pp. 492–499. Felamban, M., Shihada, B., & Jamshaid, K. (2013). Optimal node placement in underwater wireless sensor networks. In Proceedings of 27th international conference on advanced information networking and applications (IEEE), pp. 492–499.
8.
Zurück zum Zitat Allen, G. W., et al. (2006). Deploying a wireless sensor network on an active volcano. IEEE Internet Computing, 10(2), 18–25.CrossRef Allen, G. W., et al. (2006). Deploying a wireless sensor network on an active volcano. IEEE Internet Computing, 10(2), 18–25.CrossRef
9.
Zurück zum Zitat Sun, Zhi, et al. (2011). BorderSense: Border patrol through advanced wireless sensor networks. Ad Hoc Networks, 9(3), 468–477.CrossRef Sun, Zhi, et al. (2011). BorderSense: Border patrol through advanced wireless sensor networks. Ad Hoc Networks, 9(3), 468–477.CrossRef
10.
Zurück zum Zitat Zhang, H., & Hou, J. C. (2005). Maintaining sensing coverage and connectivity in large sensor networks. International Journal of Wireless Ad Hoc and Sensor Networks, 1, 89–124. Zhang, H., & Hou, J. C. (2005). Maintaining sensing coverage and connectivity in large sensor networks. International Journal of Wireless Ad Hoc and Sensor Networks, 1, 89–124.
11.
Zurück zum Zitat Ye, F., Zhong, G., Cheng, J., Lu, S., & Zhang, L. (2003). Peas: A robust energy conserving protocol for long-lived sensor networks. In Proceedings of 23rd international conference on distributed computing systems, pp. 28–37. Ye, F., Zhong, G., Cheng, J., Lu, S., & Zhang, L. (2003). Peas: A robust energy conserving protocol for long-lived sensor networks. In Proceedings of 23rd international conference on distributed computing systems, pp. 28–37.
12.
Zurück zum Zitat Siqueira, I. G., Fiqueiredo, M., Loureiro, A., Nogueira, J., & Ruiz, L. (2006). An integrated approach for density control and routing in wireless sensor networks. In Proceedings of parallel and distributed processing symposium, Greece, pp. 10–19. Siqueira, I. G., Fiqueiredo, M., Loureiro, A., Nogueira, J., & Ruiz, L. (2006). An integrated approach for density control and routing in wireless sensor networks. In Proceedings of parallel and distributed processing symposium, Greece, pp. 10–19.
13.
Zurück zum Zitat Ollero, A. et al. (2007). Platform for autonomous self-deploying and operation of wireless sensor-actuator networks cooperating with unmanned aerial vehicles. In International workshop on safety, security and rescue robotics, Rome, pp. 1–6. Ollero, A. et al. (2007). Platform for autonomous self-deploying and operation of wireless sensor-actuator networks cooperating with unmanned aerial vehicles. In International workshop on safety, security and rescue robotics, Rome, pp. 1–6.
14.
Zurück zum Zitat Kumar, A., Sharma, V., & Prasad, D. (2013). SDRS: Split detection and reconfiguration scheme for quick healing of wireless sensor networks. International Journal of Advance Computing, 46, 1252–1260. Kumar, A., Sharma, V., & Prasad, D. (2013). SDRS: Split detection and reconfiguration scheme for quick healing of wireless sensor networks. International Journal of Advance Computing, 46, 1252–1260.
15.
Zurück zum Zitat Ghosh, A., & Das, S. K. (2008). Coverage and connectivity issues in wireless sensor networks: A survey. Pervasive and Mobile Computing, 4(3), 303–334.MathSciNetCrossRef Ghosh, A., & Das, S. K. (2008). Coverage and connectivity issues in wireless sensor networks: A survey. Pervasive and Mobile Computing, 4(3), 303–334.MathSciNetCrossRef
16.
Zurück zum Zitat Mulligan, R., & Ammari, H. M. (2010). Coverage in wireless sensor networks: A survey. Network Protocols and Algorithms, 2(2), 27–53. Mulligan, R., & Ammari, H. M. (2010). Coverage in wireless sensor networks: A survey. Network Protocols and Algorithms, 2(2), 27–53.
17.
Zurück zum Zitat Poduri, S., & Sukhatme, G. S. (2004). Constrained coverage for mobile sensor networks. In Proceedings of IEEE international conference on robotics and automation ICRA'04, Los Angeles, pp. 165–171. Poduri, S., & Sukhatme, G. S. (2004). Constrained coverage for mobile sensor networks. In Proceedings of IEEE international conference on robotics and automation ICRA'04, Los Angeles, pp. 165–171.
18.
Zurück zum Zitat Howard, A., Matarić, M. J., & Sukhatme, G. S. (2002). An incremental self-deployment algorithm for mobile sensor networks. Autonomous Robots, 13(2), 113–126.CrossRefMATH Howard, A., Matarić, M. J., & Sukhatme, G. S. (2002). An incremental self-deployment algorithm for mobile sensor networks. Autonomous Robots, 13(2), 113–126.CrossRefMATH
19.
Zurück zum Zitat Wang, G., Cao, G., & La Porta, T. (2006). Movement-assisted sensor deployment. IEEE Transactions on Mobile Computing, 5(6), 640–652.CrossRef Wang, G., Cao, G., & La Porta, T. (2006). Movement-assisted sensor deployment. IEEE Transactions on Mobile Computing, 5(6), 640–652.CrossRef
20.
Zurück zum Zitat Lee, J., Dharne, A. D., & Jayasuriya, S. (2007). Potential field based hierarchical structure for mobile sensor network deployment. In Proceedings of American control conference, New York, pp. 5946–5951. Lee, J., Dharne, A. D., & Jayasuriya, S. (2007). Potential field based hierarchical structure for mobile sensor network deployment. In Proceedings of American control conference, New York, pp. 5946–5951.
21.
Zurück zum Zitat Zou, Y., & Chakrabarty, K. (2003). Sensor deployment and target localization based on virtual forces. In Proceedings of twenty-second annual joint conference of the IEEE computer and communications (pp. 1293–1303). IEEE Societies, San Francisco. Zou, Y., & Chakrabarty, K. (2003). Sensor deployment and target localization based on virtual forces. In Proceedings of twenty-second annual joint conference of the IEEE computer and communications (pp. 1293–1303). IEEE Societies, San Francisco.
22.
Zurück zum Zitat Locatelli, M., & Raber, U. (2002). Packing equal circles in a square: A deterministic global optimization approach. Discrete Applied Mathematics, 122(1), 139–166.MathSciNetCrossRefMATH Locatelli, M., & Raber, U. (2002). Packing equal circles in a square: A deterministic global optimization approach. Discrete Applied Mathematics, 122(1), 139–166.MathSciNetCrossRefMATH
23.
Zurück zum Zitat Tan, G., Jarvis, S. A., & Kermarrec, A. M. (2009). Connectivity-guaranteed and obstacle-adaptive deployment schemes for mobile sensor networks. IEEE Transactions on Mobile Computing, 8(6), 836–848.CrossRef Tan, G., Jarvis, S. A., & Kermarrec, A. M. (2009). Connectivity-guaranteed and obstacle-adaptive deployment schemes for mobile sensor networks. IEEE Transactions on Mobile Computing, 8(6), 836–848.CrossRef
24.
Zurück zum Zitat Lumelsk, V. J., & Stepanov, A. A. (1987). Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica, 2, 403–430.MathSciNetCrossRefMATH Lumelsk, V. J., & Stepanov, A. A. (1987). Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica, 2, 403–430.MathSciNetCrossRefMATH
25.
Zurück zum Zitat Kumar, A., Sharma, V., & Prasad, D. (2013). Distributed deployment scheme for homogeneous distribution of randomly deployed mobile sensor nodes in wireless sensor networks. International Journal of Advanced Computer Science and Applications, 4(4), 139–146.CrossRef Kumar, A., Sharma, V., & Prasad, D. (2013). Distributed deployment scheme for homogeneous distribution of randomly deployed mobile sensor nodes in wireless sensor networks. International Journal of Advanced Computer Science and Applications, 4(4), 139–146.CrossRef
26.
Zurück zum Zitat Gupta, M., Krishna, C. R., & Prasad, D. (2014). SEEDS: Scalable energy efficient deployment scheme for homogeneous wireless sensor networks. In International conference on issues and challanges in intelligent computing techniques (ICICT), pp. 416–423. Gupta, M., Krishna, C. R., & Prasad, D. (2014). SEEDS: Scalable energy efficient deployment scheme for homogeneous wireless sensor networks. In International conference on issues and challanges in intelligent computing techniques (ICICT), pp. 416–423.
27.
Zurück zum Zitat Sharma, V. et al (2015). Policy for random aerial deployment in large scale wireless sensor networks, In International conference on computing communication and Automation (ICCCA), pp. 367–373. Sharma, V. et al (2015). Policy for random aerial deployment in large scale wireless sensor networks, In International conference on computing communication and Automation (ICCCA), pp. 367–373.
28.
Zurück zum Zitat Stuber, G. L. (2011). Principles of mobile communication. Atlanta, USA: Springer Science and Business Media. Stuber, G. L. (2011). Principles of mobile communication. Atlanta, USA: Springer Science and Business Media.
29.
Zurück zum Zitat Rappaort, T. S. (2002). Wireless communications: Principles and practice. New Jersey: Prentice-Hall. Rappaort, T. S. (2002). Wireless communications: Principles and practice. New Jersey: Prentice-Hall.
30.
Zurück zum Zitat Knacke, T. W. (1992). Parachute recovery systems: Design manual. Santa Barbara, USA: Para Pub. Knacke, T. W. (1992). Parachute recovery systems: Design manual. Santa Barbara, USA: Para Pub.
31.
Zurück zum Zitat Poynter, D. (1991). The parachute manual: A technical treatise on aerodynamic decelerators. Santa Barbara, USA: Para Pub. Poynter, D. (1991). The parachute manual: A technical treatise on aerodynamic decelerators. Santa Barbara, USA: Para Pub.
33.
Zurück zum Zitat Zhang, B., & Yu, F. (2008). An energy efficient localization algorithm for wireless sensor networks using a mobile anchor node. In Proceedings of international conference on information and automation, Changsha, pp. 215–219. Zhang, B., & Yu, F. (2008). An energy efficient localization algorithm for wireless sensor networks using a mobile anchor node. In Proceedings of international conference on information and automation, Changsha, pp. 215–219.
34.
Zurück zum Zitat ELECTRO-CRAFT CORPORATION. (1972). DC motors and generators. In DC motors, speed controls, servo systems. Pergamon, pp. 2.1–2.114. ELECTRO-CRAFT CORPORATION. (1972). DC motors and generators. In DC motors, speed controls, servo systems. Pergamon, pp. 2.1–2.114.
Metadaten
Titel
NADS: Neighbor Assisted Deployment Scheme for Optimal Placement of Sensor Nodes to Achieve Blanket Coverage in Wireless Sensor Network
verfasst von
Vikrant Sharma
R. B. Patel
H. S. Bhadauria
Devendra Prasad
Publikationsdatum
20.06.2016
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2016
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-016-3430-6

Weitere Artikel der Ausgabe 4/2016

Wireless Personal Communications 4/2016 Zur Ausgabe

Neuer Inhalt