Skip to main content
Erschienen in: Wireless Personal Communications 3/2017

03.02.2017

Study of Indoor Path Loss Computational Models for Femtocell Based Mobile Network

verfasst von: Priti Deb, Anwesha Mukherjee, Debashis De

Erschienen in: Wireless Personal Communications | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Path loss minimization in next generation mobile network is a challenging research area. The signal transmitted by a base station degrades due to various obstacles in the environment. The received signal level at the mobile station is less than the transmitted signal level of the base station. This loss in the signal level is referred as path loss in mobile network. In this paper different path loss models are discussed for indoor environment covered by femtocell. It is assumed that the mobile users in that region exclusively access the services of femtocell. As only indoor area is considered, non-line of sight propagation is examined. Signal-to-interference-plus-noise-ratio for a femtocell base station is calculated. The performance of the path loss models are analyzed using vector signal generator and vector signal analyzer. A comparative analysis is carried out between the models. Based on the comparative analysis, a case study is performed to demonstrate how an appropriate path loss model will be selected depending on the frequency range, building type, walls and floors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Himayat, N., Talwar, S., Rao, A., & Soni, R. (2010). Interference management for 4G cellular standards [wimax/lte update]. Communications Magazine, IEEE, 48(8), 86–92.CrossRef Himayat, N., Talwar, S., Rao, A., & Soni, R. (2010). Interference management for 4G cellular standards [wimax/lte update]. Communications Magazine, IEEE, 48(8), 86–92.CrossRef
2.
Zurück zum Zitat Zahariadis, T. (2003). Trends in the path to 4G. Communications Engineer, 1(1), 12–15.CrossRef Zahariadis, T. (2003). Trends in the path to 4G. Communications Engineer, 1(1), 12–15.CrossRef
3.
Zurück zum Zitat Choi, Y. J., Lee, K. B., & Bahk, S. (2007). All-IP 4G network architecture for efficient mobility and resource management. Wireless Communications, IEEE, 14(2), 42–46.CrossRef Choi, Y. J., Lee, K. B., & Bahk, S. (2007). All-IP 4G network architecture for efficient mobility and resource management. Wireless Communications, IEEE, 14(2), 42–46.CrossRef
4.
Zurück zum Zitat Varshney, U., & Jain, R. (2001). Issues in emerging 4G wireless networks. Computer, 34(6), 94–96.CrossRef Varshney, U., & Jain, R. (2001). Issues in emerging 4G wireless networks. Computer, 34(6), 94–96.CrossRef
5.
Zurück zum Zitat Velasco, E., Wavemax Corp. (2014). Next generation network services for 3G/4G mobile data offload in a network of shared protected/locked Wi-Fi access points. U.S. Patent 8,811,363. Velasco, E., Wavemax Corp. (2014). Next generation network services for 3G/4G mobile data offload in a network of shared protected/locked Wi-Fi access points. U.S. Patent 8,811,363.
6.
Zurück zum Zitat Ikuno J. C., Wrulich, M., & Rupp, M. (2010). System level simulation of LTE networks. In Vehicular technology conference (VTC 2010-spring), 2010 IEEE 71st (pp. 1–5). IEEE. Ikuno J. C., Wrulich, M., & Rupp, M. (2010). System level simulation of LTE networks. In Vehicular technology conference (VTC 2010-spring), 2010 IEEE 71st (pp. 1–5). IEEE.
7.
Zurück zum Zitat Lobinger, A., Stefanski, S., Jansen, T., & Balan, I. (2011). Coordinating handover parameter optimization and load balancing in LTE self-optimizing networks. In Vehicular technology conference (VTC spring), 2011 IEEE 73rd (pp. 1–5). IEEE. Lobinger, A., Stefanski, S., Jansen, T., & Balan, I. (2011). Coordinating handover parameter optimization and load balancing in LTE self-optimizing networks. In Vehicular technology conference (VTC spring), 2011 IEEE 73rd (pp. 1–5). IEEE.
8.
Zurück zum Zitat Hu, H., Zhang, J., Zheng, X., Yang, Y., & Wu, P. (2010). Self-configuration and self-optimization for LTE networks. Communications magazine, IEEE, 48(2), 94–100.CrossRef Hu, H., Zhang, J., Zheng, X., Yang, Y., & Wu, P. (2010). Self-configuration and self-optimization for LTE networks. Communications magazine, IEEE, 48(2), 94–100.CrossRef
9.
Zurück zum Zitat Zaki, Y., Zhao, L., Goerg, C., & Timm-Giel, A. (2011). LTE mobile network virtualization. Mobile Networks and Applications, 16(4), 424–432.CrossRef Zaki, Y., Zhao, L., Goerg, C., & Timm-Giel, A. (2011). LTE mobile network virtualization. Mobile Networks and Applications, 16(4), 424–432.CrossRef
10.
Zurück zum Zitat Yuan, G., Zhang, X., Wang, W., & Yang, Y. (2010). Carrier aggregation for LTE-advanced mobile communication systems. Communications Magazine, IEEE, 48(2), 88–93.CrossRef Yuan, G., Zhang, X., Wang, W., & Yang, Y. (2010). Carrier aggregation for LTE-advanced mobile communication systems. Communications Magazine, IEEE, 48(2), 88–93.CrossRef
11.
Zurück zum Zitat Chandrasekhar, V., Andrews, J. G., & Gatherer, A. (2008). Femtocell networks: A survey. Communications Magazine, IEEE, 46(9), 59–67.CrossRef Chandrasekhar, V., Andrews, J. G., & Gatherer, A. (2008). Femtocell networks: A survey. Communications Magazine, IEEE, 46(9), 59–67.CrossRef
12.
Zurück zum Zitat Chandrasekhar, V., Andrews, J. G., Muharemovic, T., Shen, Z., & Gatherer, A. (2009). Power control in two-tier femtocell networks. IEEE Transactions on Wireless Communications, 8(8), 4316–4328.CrossRef Chandrasekhar, V., Andrews, J. G., Muharemovic, T., Shen, Z., & Gatherer, A. (2009). Power control in two-tier femtocell networks. IEEE Transactions on Wireless Communications, 8(8), 4316–4328.CrossRef
13.
Zurück zum Zitat Bouras, C., Kokkinos, V., Kontodimas, K., & Papazois, A. (2012). A simulation framework for LTE-A systems with femtocell overlays. In Proceedings of the 7th ACM workshop on performance monitoring and measurement of heterogeneous wireless and wired networks (pp. 85–90). ACM. Bouras, C., Kokkinos, V., Kontodimas, K., & Papazois, A. (2012). A simulation framework for LTE-A systems with femtocell overlays. In Proceedings of the 7th ACM workshop on performance monitoring and measurement of heterogeneous wireless and wired networks (pp. 85–90). ACM.
14.
Zurück zum Zitat Claussen, H., Ho, L. T., & Samuel, L. G. (2008). An overview of the femtocell concept. Bell Labs Technical Journal, 13(1), 221–245.CrossRef Claussen, H., Ho, L. T., & Samuel, L. G. (2008). An overview of the femtocell concept. Bell Labs Technical Journal, 13(1), 221–245.CrossRef
15.
Zurück zum Zitat Jo, H. S., Mun, C., Moon, J., & Yook, J. G. (2009). Interference mitigation using uplink power control for two-tier femtocell networks. IEEE Transactions on Wireless Communications, 8(10), 4906–4910.CrossRef Jo, H. S., Mun, C., Moon, J., & Yook, J. G. (2009). Interference mitigation using uplink power control for two-tier femtocell networks. IEEE Transactions on Wireless Communications, 8(10), 4906–4910.CrossRef
16.
Zurück zum Zitat Claussen, H., Ho, L. T., & Samuel, L. G. (2008). Self-optimization of coverage for femtocell deployments. In Wireless telecommunications symposium (pp. 278–285). IEEE. Claussen, H., Ho, L. T., & Samuel, L. G. (2008). Self-optimization of coverage for femtocell deployments. In Wireless telecommunications symposium (pp. 278–285). IEEE.
17.
Zurück zum Zitat Weitzen, J., & Grosch, T. (2010). Comparing coverage quality for femtocell and macrocell broadband data services. Communications Magazine, IEEE, 48(1), 40–44.CrossRef Weitzen, J., & Grosch, T. (2010). Comparing coverage quality for femtocell and macrocell broadband data services. Communications Magazine, IEEE, 48(1), 40–44.CrossRef
18.
Zurück zum Zitat Claussen, H., & Pivit, F. (2009, June). Femtocell coverage optimization using switched multi-element antennas. In IEEE international conference on communications (pp. 1–6). IEEE. Claussen, H., & Pivit, F. (2009, June). Femtocell coverage optimization using switched multi-element antennas. In IEEE international conference on communications (pp. 1–6). IEEE.
19.
Zurück zum Zitat Calin, D., Claussen, H., & Uzunalioglu, H. (2010). On femto deployment architectures and macrocell offloading benefits in joint macro-femto deployments. Communications Magazine, IEEE, 48(1), 26–32.CrossRef Calin, D., Claussen, H., & Uzunalioglu, H. (2010). On femto deployment architectures and macrocell offloading benefits in joint macro-femto deployments. Communications Magazine, IEEE, 48(1), 26–32.CrossRef
20.
Zurück zum Zitat Ashraf, I., Claussen, H., & Ho, L. T. (2010). Distributed radio coverage optimization in enterprise femtocell networks. In IEEE international conference on communications (pp. 1–6). IEEE. Ashraf, I., Claussen, H., & Ho, L. T. (2010). Distributed radio coverage optimization in enterprise femtocell networks. In IEEE international conference on communications (pp. 1–6). IEEE.
21.
Zurück zum Zitat Akyildiz, I. F., Xie, J., & Mohanty, S. (2004). A survey of mobility management in next-generation all-IP-based wireless systems. Wireless Communications, IEEE, 11(4), 16–28.CrossRef Akyildiz, I. F., Xie, J., & Mohanty, S. (2004). A survey of mobility management in next-generation all-IP-based wireless systems. Wireless Communications, IEEE, 11(4), 16–28.CrossRef
22.
Zurück zum Zitat Huang, L., Zhu, G., & Du, X. (2013). Cognitive femtocell networks: An opportunistic spectrum access for future indoor wireless coverage. Wireless Communications, IEEE, 20(2), 44–51.CrossRef Huang, L., Zhu, G., & Du, X. (2013). Cognitive femtocell networks: An opportunistic spectrum access for future indoor wireless coverage. Wireless Communications, IEEE, 20(2), 44–51.CrossRef
23.
Zurück zum Zitat Hiltunen, K., Olin, B., & Lundevall, M. (2005, May). Using dedicated in-building systems to improve HSDPA indoor coverage and capacity. In Vehicular Technology Conference (pp. 2379–2383). IEEE. Hiltunen, K., Olin, B., & Lundevall, M. (2005, May). Using dedicated in-building systems to improve HSDPA indoor coverage and capacity. In Vehicular Technology Conference (pp. 2379–2383). IEEE.
24.
Zurück zum Zitat Isotalo, T., Lahdekorpi, P., & Lempiäinen, J. (2008). Improving HSDPA indoor coverage and throughput by repeater and dedicated indoor system. EURASIP Journal on Wireless Communications and Networking, 2008, 45.CrossRef Isotalo, T., Lahdekorpi, P., & Lempiäinen, J. (2008). Improving HSDPA indoor coverage and throughput by repeater and dedicated indoor system. EURASIP Journal on Wireless Communications and Networking, 2008, 45.CrossRef
25.
Zurück zum Zitat Mohjazi, L., Al-Qutayri, M., Barada, H., Poon, K., & Shubair, R. (2011). Deployment challenges of femtocells in future indoor wireless networks. In IEEE GCC conference and exhibition (GCC) (pp. 405–408). IEEE. Mohjazi, L., Al-Qutayri, M., Barada, H., Poon, K., & Shubair, R. (2011). Deployment challenges of femtocells in future indoor wireless networks. In IEEE GCC conference and exhibition (GCC) (pp. 405–408). IEEE.
26.
Zurück zum Zitat Karner, W., Paier, A., & Rupp, M. (2006). Indoor coverage prediction and optimization for UMTS macro cells. In Third international symposium on wireless communication systems (pp. 625–630). IEEE. Karner, W., Paier, A., & Rupp, M. (2006). Indoor coverage prediction and optimization for UMTS macro cells. In Third international symposium on wireless communication systems (pp. 625–630). IEEE.
27.
Zurück zum Zitat Huber, K. D., Brisebois, A. R. & Flynn, J. J., At &T Mobility Ii Llc. (2012).Femto cell access point pass through model. U.S. Patent 8,194,549. Huber, K. D., Brisebois, A. R. & Flynn, J. J., At &T Mobility Ii Llc. (2012).Femto cell access point pass through model. U.S. Patent 8,194,549.
28.
Zurück zum Zitat Taranetz, M., & Rupp, M. (2012). Performance of femtocell access point deployments in user hot-spot scenarios. In Telecommunication networks and applications conference (pp. 1–5). IEEE. Taranetz, M., & Rupp, M. (2012). Performance of femtocell access point deployments in user hot-spot scenarios. In Telecommunication networks and applications conference (pp. 1–5). IEEE.
29.
Zurück zum Zitat Lopez-Perez, D., Valcarce, A., De La Roche, G., & Zhang, J. (2009). OFDMA femtocells: A roadmap on interference avoidance. Communications Magazine, IEEE, 47(9), 41–48.CrossRef Lopez-Perez, D., Valcarce, A., De La Roche, G., & Zhang, J. (2009). OFDMA femtocells: A roadmap on interference avoidance. Communications Magazine, IEEE, 47(9), 41–48.CrossRef
30.
Zurück zum Zitat Ho, L. T., & Claussen, H. (2007). Effects of user-deployed, co-channel femtocells on the call drop probability in a residential scenario. In IEEE eighteenth international symposium on personal, indoor and mobile radio communications (pp. 1–5). IEEE. Ho, L. T., & Claussen, H. (2007). Effects of user-deployed, co-channel femtocells on the call drop probability in a residential scenario. In IEEE eighteenth international symposium on personal, indoor and mobile radio communications (pp. 1–5). IEEE.
31.
Zurück zum Zitat Golaup, A., Mustapha, M., & Patanapongpibul, L. B. (2009). Femtocell access control strategy in UMTS and LTE. Communications Magazine, IEEE, 47(9), 117–123.CrossRef Golaup, A., Mustapha, M., & Patanapongpibul, L. B. (2009). Femtocell access control strategy in UMTS and LTE. Communications Magazine, IEEE, 47(9), 117–123.CrossRef
32.
Zurück zum Zitat Liu, J., Kou, T., Chen, Q., & Sherali, H. D. (2012). Femtocell base station deployment in commercial buildings: A global optimization approach. IEEE Journal on Selected Areas in Communications, 30(3), 652–663.CrossRef Liu, J., Kou, T., Chen, Q., & Sherali, H. D. (2012). Femtocell base station deployment in commercial buildings: A global optimization approach. IEEE Journal on Selected Areas in Communications, 30(3), 652–663.CrossRef
33.
Zurück zum Zitat Lu, P. C., Tsao, K. J., Huang, C. R., & Hou, T. C. (2010). A suburban femtocell model for evaluating signal quality improvement in WiMAX networks with femtocell base stations. In Wireless communications and networking conference (pp. 1–6). IEEE. Lu, P. C., Tsao, K. J., Huang, C. R., & Hou, T. C. (2010). A suburban femtocell model for evaluating signal quality improvement in WiMAX networks with femtocell base stations. In Wireless communications and networking conference (pp. 1–6). IEEE.
34.
Zurück zum Zitat Morita, M., Matsunaga, Y., & Hamabe, K. (2010). Adaptive power level setting of femtocell base stations for mitigating interference with macrocells. In Vehicular technology conference fall (pp. 1–5). IEEE. Morita, M., Matsunaga, Y., & Hamabe, K. (2010). Adaptive power level setting of femtocell base stations for mitigating interference with macrocells. In Vehicular technology conference fall (pp. 1–5). IEEE.
35.
Zurück zum Zitat Guvenc, I., Jeong, M. R., Watanabe, F., & Inamura, H. (2008). A hybrid frequency assignment for femtocells and coverage area analysis for co-channel operation. IEEE Communications Letters, 12(12), 880–882.CrossRef Guvenc, I., Jeong, M. R., Watanabe, F., & Inamura, H. (2008). A hybrid frequency assignment for femtocells and coverage area analysis for co-channel operation. IEEE Communications Letters, 12(12), 880–882.CrossRef
36.
Zurück zum Zitat Saquib, N., Hossain, E., Le, L. B., & Kim, D. I. (2012). Interference management in OFDMA femtocell networks: Issues and approaches. Wireless Communications, IEEE, 19(3), 86–95.CrossRef Saquib, N., Hossain, E., Le, L. B., & Kim, D. I. (2012). Interference management in OFDMA femtocell networks: Issues and approaches. Wireless Communications, IEEE, 19(3), 86–95.CrossRef
37.
Zurück zum Zitat Ashraf, I., Ho, L. T., & Claussen, H. (2010). Improving energy efficiency of femtocell base stations via user activity detection. In Wireless communications and networking conference (pp. 1–5). IEEE. Ashraf, I., Ho, L. T., & Claussen, H. (2010). Improving energy efficiency of femtocell base stations via user activity detection. In Wireless communications and networking conference (pp. 1–5). IEEE.
38.
Zurück zum Zitat Mukherjee, A., Bhattacherjee, S., Pal, S., & De, D. (2013). Femtocell based green power consumption methods for mobile network. Computer Networks, 57(1), 162–178.CrossRef Mukherjee, A., Bhattacherjee, S., Pal, S., & De, D. (2013). Femtocell based green power consumption methods for mobile network. Computer Networks, 57(1), 162–178.CrossRef
39.
Zurück zum Zitat Mukherjee, A., & De, D. (2013). Congestion detection, prevention and avoidance strategies for an intelligent, energy and spectrum efficient green mobile network. Journal of Computational Intelligence and Electronic Systems, 2(1), 1–19.CrossRef Mukherjee, A., & De, D. (2013). Congestion detection, prevention and avoidance strategies for an intelligent, energy and spectrum efficient green mobile network. Journal of Computational Intelligence and Electronic Systems, 2(1), 1–19.CrossRef
40.
Zurück zum Zitat Torregoza, J. P. M., Enkhbat, R., & Hwang, W. J. (2010). Joint power control, base station assignment, and channel assignment in cognitive femtocell networks. EURASIP Journal on Wireless Communications and Networking, 2010(1), 1–14.CrossRef Torregoza, J. P. M., Enkhbat, R., & Hwang, W. J. (2010). Joint power control, base station assignment, and channel assignment in cognitive femtocell networks. EURASIP Journal on Wireless Communications and Networking, 2010(1), 1–14.CrossRef
41.
Zurück zum Zitat Ebongue, J. L. F. K., Nelson, M., & Nlong, J. M. (2014). Empirical path loss models for 802.11 n wireless networks at 2.4 GHz in rural regions. In e-Infrastructure and e-services for developing countries (pp. 53–63). Springer. Ebongue, J. L. F. K., Nelson, M., & Nlong, J. M. (2014). Empirical path loss models for 802.11 n wireless networks at 2.4 GHz in rural regions. In e-Infrastructure and e-services for developing countries (pp. 53–63). Springer.
42.
Zurück zum Zitat Phillips, C., Sicker, D., & Grunwald, D. (2013). A survey of wireless path loss prediction and coverage mapping methods. Communications Surveys & Tutorials, IEEE, 15(1), 255–270.CrossRef Phillips, C., Sicker, D., & Grunwald, D. (2013). A survey of wireless path loss prediction and coverage mapping methods. Communications Surveys & Tutorials, IEEE, 15(1), 255–270.CrossRef
43.
Zurück zum Zitat Sulyman, A. I., Nassar, A. T., Samimi, M. K., MacCartney, G. R., Rappaport, T. S., & Alsanie, A. (2014). Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands. Communications Magazine, IEEE, 52(9), 78–86.CrossRef Sulyman, A. I., Nassar, A. T., Samimi, M. K., MacCartney, G. R., Rappaport, T. S., & Alsanie, A. (2014). Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands. Communications Magazine, IEEE, 52(9), 78–86.CrossRef
44.
Zurück zum Zitat Huang, K., & Lau, V. K. (2014). Enabling wireless power transfer in cellular networks: Architecture, modeling and deployment. IEEE Transactions on Wireless Communications, 13(2), 902–912.CrossRef Huang, K., & Lau, V. K. (2014). Enabling wireless power transfer in cellular networks: Architecture, modeling and deployment. IEEE Transactions on Wireless Communications, 13(2), 902–912.CrossRef
45.
Zurück zum Zitat Fan, Z., Cao, F., Sun, Y., & Zhu, Z. (2013). Interference management in femtocell networks. Wireless Communications and Mobile Computing, 13(11), 1027–1046.CrossRef Fan, Z., Cao, F., Sun, Y., & Zhu, Z. (2013). Interference management in femtocell networks. Wireless Communications and Mobile Computing, 13(11), 1027–1046.CrossRef
46.
Zurück zum Zitat Qi, Y., Kobayashi, H., & Suda, H. (2006). Analysis of wireless geolocation in a non-line-of-sight environment. IEEE Transactions on Wireless Communications, 5(3), 672–681.CrossRef Qi, Y., Kobayashi, H., & Suda, H. (2006). Analysis of wireless geolocation in a non-line-of-sight environment. IEEE Transactions on Wireless Communications, 5(3), 672–681.CrossRef
47.
Zurück zum Zitat Venkatesh, S., & Buehrer, R. M. (2007). Non-line-of-sight identification in ultra-wideband systems based on received signal statistics. Microwaves, Antennas & Propagation, IET, 1(6), 1120–1130.CrossRef Venkatesh, S., & Buehrer, R. M. (2007). Non-line-of-sight identification in ultra-wideband systems based on received signal statistics. Microwaves, Antennas & Propagation, IET, 1(6), 1120–1130.CrossRef
48.
Zurück zum Zitat Turkka, J., & Renfors, M. (2008). Path loss measurements for a non-line-of-sight mobile-to-mobile environment. In Eighth international conference on ITS telecommunications (pp. 274–278). IEEE. Turkka, J., & Renfors, M. (2008). Path loss measurements for a non-line-of-sight mobile-to-mobile environment. In Eighth international conference on ITS telecommunications (pp. 274–278). IEEE.
49.
Zurück zum Zitat Andersen, J. B., Rappaport, T. S., & Yoshida, S. (1995). Propagation measurements and models for wireless communications channels. Communications Magazine, IEEE, 33(1), 42–49.CrossRef Andersen, J. B., Rappaport, T. S., & Yoshida, S. (1995). Propagation measurements and models for wireless communications channels. Communications Magazine, IEEE, 33(1), 42–49.CrossRef
50.
Zurück zum Zitat Aragon-Zavala, A. (2008). Antennas and propagation for wireless communication systems. New York: Wiley. Aragon-Zavala, A. (2008). Antennas and propagation for wireless communication systems. New York: Wiley.
51.
Zurück zum Zitat Bouras, C., Kavourgias, G., Kokkinos, V., & Papazois, A. (2012). Interference management in LTE femtocell systems using an adaptive frequency reuse scheme. In Wireless Telecommunications Symposium (WTS), 2012 (pp. 1–7). IEEE. Bouras, C., Kavourgias, G., Kokkinos, V., & Papazois, A. (2012). Interference management in LTE femtocell systems using an adaptive frequency reuse scheme. In Wireless Telecommunications Symposium (WTS), 2012 (pp. 1–7). IEEE.
52.
Zurück zum Zitat Zahir, T., Arshad, K., Nakata, A., & Moessner, K. (2013). Interference management in femtocells. Communications Surveys & Tutorials, IEEE, 15(1), 293–311.CrossRef Zahir, T., Arshad, K., Nakata, A., & Moessner, K. (2013). Interference management in femtocells. Communications Surveys & Tutorials, IEEE, 15(1), 293–311.CrossRef
53.
Zurück zum Zitat Saquib, N., Hossain, E., & Kim, D. I. (2013). Fractional frequency reuse for interference management in LTE-advanced hetnets. Wireless Communications, IEEE, 20(2), 113–122.CrossRef Saquib, N., Hossain, E., & Kim, D. I. (2013). Fractional frequency reuse for interference management in LTE-advanced hetnets. Wireless Communications, IEEE, 20(2), 113–122.CrossRef
54.
Zurück zum Zitat Shen, Z., Khoryaev, A., Eriksson, E., & Pan, X. (2012). Dynamic uplink-downlink configuration and interference management in TD-LTE. Communications Magazine, IEEE, 50(11), 51–59.CrossRef Shen, Z., Khoryaev, A., Eriksson, E., & Pan, X. (2012). Dynamic uplink-downlink configuration and interference management in TD-LTE. Communications Magazine, IEEE, 50(11), 51–59.CrossRef
55.
Zurück zum Zitat Andrews, J. G., Claussen, H., Dohler, M., Rangan, S., & Reed, M. C. (2012). Femtocells: Past, present, and future. IEEE Journal on Selected Areas in Communications, 30(3), 497–508.CrossRef Andrews, J. G., Claussen, H., Dohler, M., Rangan, S., & Reed, M. C. (2012). Femtocells: Past, present, and future. IEEE Journal on Selected Areas in Communications, 30(3), 497–508.CrossRef
56.
Zurück zum Zitat Alkandari, A., & Ahmad, M. A. (2012). Interference management in femtocells. Journal of Advanced Computer Science and Technology Research, 2(1), 10–21. Alkandari, A., & Ahmad, M. A. (2012). Interference management in femtocells. Journal of Advanced Computer Science and Technology Research, 2(1), 10–21.
57.
Zurück zum Zitat Zhang, Q., Feng, Z., & Li, W. (2015). Coverage Self-Optimization for Randomly Deployed Femtocell Networks. Wireless Personal Communications, 82(4), 2481–2504.CrossRef Zhang, Q., Feng, Z., & Li, W. (2015). Coverage Self-Optimization for Randomly Deployed Femtocell Networks. Wireless Personal Communications, 82(4), 2481–2504.CrossRef
58.
Zurück zum Zitat Chai, X., Xu, X., & Zhang, Z. (2015). A user-selected uplink power control algorithm in the two-tier femtocell network. Science China Information Sciences, 58(4), 1–12.CrossRef Chai, X., Xu, X., & Zhang, Z. (2015). A user-selected uplink power control algorithm in the two-tier femtocell network. Science China Information Sciences, 58(4), 1–12.CrossRef
59.
Zurück zum Zitat Mukherjee, A., De, D., & Deb, P. (2016). Interference management in macro-femtocell and micro-femtocell cluster-based long-term evaluation-advanced green mobile network. IET Communications, 10(5), 468–478.CrossRef Mukherjee, A., De, D., & Deb, P. (2016). Interference management in macro-femtocell and micro-femtocell cluster-based long-term evaluation-advanced green mobile network. IET Communications, 10(5), 468–478.CrossRef
60.
Zurück zum Zitat Chowdhury, M. Z., Jang, Y. M., & Haas, Z. J. (2011). Cost-effective frequency planning for capacity enhancement of femtocellular networks. Wireless Personal Communications, 60(1), 83–104.CrossRef Chowdhury, M. Z., Jang, Y. M., & Haas, Z. J. (2011). Cost-effective frequency planning for capacity enhancement of femtocellular networks. Wireless Personal Communications, 60(1), 83–104.CrossRef
61.
Zurück zum Zitat Kalbkhani, H., Jafarpour-Alamdari, S., Solouk, V., & Shayesteh, M. G. (2014). Interference management and six-sector macrocells for performance improvement in femto–macro cellular networks. Wireless Personal Communications, 75(4), 2037–2051.CrossRef Kalbkhani, H., Jafarpour-Alamdari, S., Solouk, V., & Shayesteh, M. G. (2014). Interference management and six-sector macrocells for performance improvement in femto–macro cellular networks. Wireless Personal Communications, 75(4), 2037–2051.CrossRef
62.
Zurück zum Zitat Oh, C. Y., Chung, M. Y., Choo, H., & Lee, T. J. (2013). Resource allocation with partitioning criterion for macro-femto overlay cellular networks with fractional frequency reuse. Wireless Personal Communications, 68(2), 417–432.CrossRef Oh, C. Y., Chung, M. Y., Choo, H., & Lee, T. J. (2013). Resource allocation with partitioning criterion for macro-femto overlay cellular networks with fractional frequency reuse. Wireless Personal Communications, 68(2), 417–432.CrossRef
63.
Zurück zum Zitat Dohler, M., & Aghvami, A. H. (1999). An outdoor-indoor interface model for radio wave propagation for 2.4, 5.2 and 60 GHz. MSc Project, King’s College London. Dohler, M., & Aghvami, A. H. (1999). An outdoor-indoor interface model for radio wave propagation for 2.4, 5.2 and 60 GHz. MSc Project, King’s College London.
64.
Zurück zum Zitat Damasso, E., & Correia, L. M. (1999). Digital Mobile Radio Towards Future Generation-COST 231 Final Report. Brussels: COST Office. Damasso, E., & Correia, L. M. (1999). Digital Mobile Radio Towards Future Generation-COST 231 Final Report. Brussels: COST Office.
65.
Zurück zum Zitat Bultitude, Y. D. J., & Rautiainen, T. (2007). IST-4-027756 WINNER II D1. 1.2 V1. 2 WINNER II channel models, 1–82. Bultitude, Y. D. J., & Rautiainen, T. (2007). IST-4-027756 WINNER II D1. 1.2 V1. 2 WINNER II channel models, 1–82.
66.
Zurück zum Zitat Lott, M., & Forkel, I. (2001). A multi-wall-and-floor model for indoor radio propagation. In Vehicular technology conference (pp. 464–468). IEEE. Lott, M., & Forkel, I. (2001). A multi-wall-and-floor model for indoor radio propagation. In Vehicular technology conference (pp. 464–468). IEEE.
67.
Zurück zum Zitat Recommendations, I. T. U. R. (2001). Propagation data and prediction methods for the planning of indoor radio communication systems and radio local area networks in the frequency range 900 MHz to 100 GHz. ITU Recommendations, 1–15. Recommendations, I. T. U. R. (2001). Propagation data and prediction methods for the planning of indoor radio communication systems and radio local area networks in the frequency range 900 MHz to 100 GHz. ITU Recommendations, 1–15.
68.
Zurück zum Zitat Singh, S., & Singh, P. (2012). Key concepts and network architecture for 5G mobile technology. International Journal of Scientific Research Engineering & Technology (IJSRET), 1(5), 165–170. Singh, S., & Singh, P. (2012). Key concepts and network architecture for 5G mobile technology. International Journal of Scientific Research Engineering & Technology (IJSRET), 1(5), 165–170.
69.
Zurück zum Zitat Müller, C., Georg, H., Putzke, M., & Wietfeld, C. (2011, October). Performance analysis of radio propagation models for Smart Grid applications. In IEEE international conference on smart grid communications (SmartGridComm) (pp. 96–101). IEEE. Müller, C., Georg, H., Putzke, M., & Wietfeld, C. (2011, October). Performance analysis of radio propagation models for Smart Grid applications. In IEEE international conference on smart grid communications (SmartGridComm) (pp. 96–101). IEEE.
70.
Zurück zum Zitat Deng, S., Samimi, M. K., & Rappaport, T. S. (2015, June). 28 GHz and 73 GHz millimeter-wave indoor propagation measurements and path loss models. In IEEE international conference on communication workshop (pp. 1244-1250). IEEE. Deng, S., Samimi, M. K., & Rappaport, T. S. (2015, June). 28 GHz and 73 GHz millimeter-wave indoor propagation measurements and path loss models. In IEEE international conference on communication workshop (pp. 1244-1250). IEEE.
71.
Zurück zum Zitat Rappaport, T. S., Gutierrez, F., Ben-Dor, E., Murdock, J. N., Qiao, Y., & Tamir, J. (2013). Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. Antennas and Propagation, IEEE Transactions on, 61(4), 1850–1859.CrossRef Rappaport, T. S., Gutierrez, F., Ben-Dor, E., Murdock, J. N., Qiao, Y., & Tamir, J. (2013). Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. Antennas and Propagation, IEEE Transactions on, 61(4), 1850–1859.CrossRef
72.
Zurück zum Zitat Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! Access, IEEE, 1, 335–349.CrossRef Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! Access, IEEE, 1, 335–349.CrossRef
73.
Zurück zum Zitat MacCartney, G. R., Zhang, J., Nie, S., & Rappaport, T. S. (2013). Path loss models for 5G millimeter wave propagation channels in urban microcells. In Global communications conference (pp. 3948–3953). IEEE. MacCartney, G. R., Zhang, J., Nie, S., & Rappaport, T. S. (2013). Path loss models for 5G millimeter wave propagation channels in urban microcells. In Global communications conference (pp. 3948–3953). IEEE.
74.
Zurück zum Zitat Larew, S. G., Thomas, T., Cudak, M., & Ghosh, A. (2013, December). Air interface design and ray tracing study for 5G millimeter wave communications. In Globecom workshops (pp. 117–122). IEEE. Larew, S. G., Thomas, T., Cudak, M., & Ghosh, A. (2013, December). Air interface design and ray tracing study for 5G millimeter wave communications. In Globecom workshops (pp. 117–122). IEEE.
75.
Zurück zum Zitat Federal Communications Commission. (1997). Millimeter wave propagation: Spectrum management implications. Bulletin, 70, 1–24. Federal Communications Commission. (1997). Millimeter wave propagation: Spectrum management implications. Bulletin, 70, 1–24.
76.
Zurück zum Zitat Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE, 102(3), 366–385.CrossRef Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE, 102(3), 366–385.CrossRef
77.
Zurück zum Zitat Khan, F., Pi, Z., & Rajagopal, S. (2012, October). Millimeter-wave mobile broadband with large scale spatial processing for 5G mobile communication. In Annual allerton conference on communication, control, and computing (pp. 1517–1523). IEEE. Khan, F., Pi, Z., & Rajagopal, S. (2012, October). Millimeter-wave mobile broadband with large scale spatial processing for 5G mobile communication. In Annual allerton conference on communication, control, and computing (pp. 1517–1523). IEEE.
78.
Zurück zum Zitat Viriyasitavat, W., Boban, M., Tsai, H. M., & Vasilakos, A. (2015). Vehicular communications: Survey and challenges of channel and propagation models. Vehicular Technology Magazine, IEEE, 10(2), 55–66.CrossRef Viriyasitavat, W., Boban, M., Tsai, H. M., & Vasilakos, A. (2015). Vehicular communications: Survey and challenges of channel and propagation models. Vehicular Technology Magazine, IEEE, 10(2), 55–66.CrossRef
79.
Zurück zum Zitat Sommer, C., Eckhoff, D., German, R., & Dressler, F. (2011, January). A computationally inexpensive empirical model of IEEE 802.11 p radio shadowing in urban environments. In Eighth international conference on wireless on-demand network systems and services (pp. 84–90). IEEE. Sommer, C., Eckhoff, D., German, R., & Dressler, F. (2011, January). A computationally inexpensive empirical model of IEEE 802.11 p radio shadowing in urban environments. In Eighth international conference on wireless on-demand network systems and services (pp. 84–90). IEEE.
Metadaten
Titel
Study of Indoor Path Loss Computational Models for Femtocell Based Mobile Network
verfasst von
Priti Deb
Anwesha Mukherjee
Debashis De
Publikationsdatum
03.02.2017
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2017
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-017-3983-z

Weitere Artikel der Ausgabe 3/2017

Wireless Personal Communications 3/2017 Zur Ausgabe

Neuer Inhalt