Skip to main content
Erschienen in: Wireless Personal Communications 1/2018

09.04.2018

A Novel Game Theoretic Method for Efficient Downlink Resource Allocation in Dual Band 5G Heterogeneous Network

verfasst von: Ramoni O. Adeogun

Erschienen in: Wireless Personal Communications | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hybrid heterogeneous wireless networks utilizing both traditional microwave frequency band and millimetre wave band are currently been investigated as a potential approach to meet the increasing demand for ultra-high rate transmission with the severe microwave spectrum scarcity and requirement for low power network devices. In this paper, we investigate downlink resource allocation in two-tier heterogeneous networks comprising of a macrocell transmitting at a microwave frequency and dual-band small cells utilizing both microwave and millimetre wave frequencies. We present a novel architecture with dual band small cell base stations. The small cell coverage area is divided into two regions where the users in the inner and outer regions are served by the associated small cells on millimetre wave and microwave frequencies, respectively. We formulate a two layer game theory based approach for maximizing energy efficiency and spectral efficiency of the system with optimal usage of available radio resources. The proposed game theoretic approach comprises of a non-cooperative frequency assignment game as its first layer and a multi-objective optimization based game as the second layer. In the frequency assignment game, each small cell base station selects a frequency band from either the microwave band or millimetre wave band for each of its associated users by maximizing the data rate of its users. The solution to the frequency assignment game is obtained via Pure Strategy Nash Equilibrium. The utility function of the game in the second layer involves power and sub-carrier allocation via the joint maximization of both energy efficiency and spectral efficiency of the network. The utility function is formulated as a multi-objective optimization problem which is converted into a single objective problem and solved using Lagrangian dual relaxation. Simulations results show that the proposed dual band heterogeneous network with game theoretic resource allocation offers improved sum rate, energy efficiency and spectral efficiency compared to classical shared spectrum heterogeneous network utilizing only microwave frequency band.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
A general consensus in channel modeling literature is to use \(d_0=1\,\)m. This has been validated for far field propagation [33].
 
2
The word Efficient is used here to refer to both Energy and Spectral Efficiency.
 
3
Utility function is also referred as reward/payoff function. These terms will be used interchangeably throughout this paper.
 
Literatur
1.
Zurück zum Zitat Rappaport, T., Murdock, J., & Gutierrez, F. (2011). State of the art in 60-GHz integrated circuits and systems for wireless communications. Proceedings of the IEEE, 99(8), 1390–1436.CrossRef Rappaport, T., Murdock, J., & Gutierrez, F. (2011). State of the art in 60-GHz integrated circuits and systems for wireless communications. Proceedings of the IEEE, 99(8), 1390–1436.CrossRef
2.
Zurück zum Zitat Rappaport, T., Gutierrez, F., Ben-Dor, E., Murdock, J., Qiao, Y., & Tamir, J. (2013). Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Transactions on Antennas and Propagation, 61(4), 1850–1859.CrossRef Rappaport, T., Gutierrez, F., Ben-Dor, E., Murdock, J., Qiao, Y., & Tamir, J. (2013). Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Transactions on Antennas and Propagation, 61(4), 1850–1859.CrossRef
4.
Zurück zum Zitat Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107.CrossRef Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107.CrossRef
5.
Zurück zum Zitat Rappaport, T., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 1, 335–349.CrossRef Rappaport, T., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 1, 335–349.CrossRef
7.
Zurück zum Zitat Kuang, Q., Utschick, W., & Dotzler, A. (2016). Optimal joint user association and multi-pattern resource allocation in heterogeneous networks. IEEE Transactions on Signal Processing, 64(13), 3388–3401.MathSciNetCrossRef Kuang, Q., Utschick, W., & Dotzler, A. (2016). Optimal joint user association and multi-pattern resource allocation in heterogeneous networks. IEEE Transactions on Signal Processing, 64(13), 3388–3401.MathSciNetCrossRef
8.
Zurück zum Zitat Mohjazi, L. S., Al-Qutayri, M. A., Barada, H. R., Poon, K. F., & Shubair, R. M. (2012). Self-optimization of pilot power in enterprise femtocells using multi objective heuristic. Journal of Computer Networks and Communications. https://doi.org/10.1155/2012/303465. Mohjazi, L. S., Al-Qutayri, M. A., Barada, H. R., Poon, K. F., & Shubair, R. M. (2012). Self-optimization of pilot power in enterprise femtocells using multi objective heuristic. Journal of Computer Networks and Communications. https://​doi.​org/​10.​1155/​2012/​303465.
9.
Zurück zum Zitat Yang, K., Martin, S., Quadri, D., Wu, J., & Feng, G. (2016). Energy-efficient downlink resource allocation in heterogeneous OFDMA networks. IEEE Transactions on Vehicular Technology, PP(99), 1.CrossRef Yang, K., Martin, S., Quadri, D., Wu, J., & Feng, G. (2016). Energy-efficient downlink resource allocation in heterogeneous OFDMA networks. IEEE Transactions on Vehicular Technology, PP(99), 1.CrossRef
10.
Zurück zum Zitat Singh, V., Lentz, M., Bhattacharjee, B., La, R. J., & Shayman, M. A. (2016). Dynamic frequency resource allocation in heterogeneous cellular networks. IEEE Transactions on Mobile Computing, 15(11), 2735–2748.CrossRef Singh, V., Lentz, M., Bhattacharjee, B., La, R. J., & Shayman, M. A. (2016). Dynamic frequency resource allocation in heterogeneous cellular networks. IEEE Transactions on Mobile Computing, 15(11), 2735–2748.CrossRef
11.
Zurück zum Zitat Prez-Romero, J., Snchez-Gonzlez, J., Agust, R., Lorenzo, B., & Glisic, S. (2016). Power-efficient resource allocation in a heterogeneous network with cellular and D2D capabilities. IEEE Transactions on Vehicular Technology, 65(11), 9272–9286.CrossRef Prez-Romero, J., Snchez-Gonzlez, J., Agust, R., Lorenzo, B., & Glisic, S. (2016). Power-efficient resource allocation in a heterogeneous network with cellular and D2D capabilities. IEEE Transactions on Vehicular Technology, 65(11), 9272–9286.CrossRef
12.
Zurück zum Zitat Maksymyuk, T., Brych, M., & Masyuk, A. (2015). Fractal geometry based resource allocation for 5G heterogeneous networks. In Problems of infocommunications science and technology (PICST), 2015 second international scientific-practical conference (pp. 69–72). Maksymyuk, T., Brych, M., & Masyuk, A. (2015). Fractal geometry based resource allocation for 5G heterogeneous networks. In Problems of infocommunications science and technology (PICST), 2015 second international scientific-practical conference (pp. 69–72).
13.
Zurück zum Zitat Bikov, E., & Botvich, D. (2015). Multi-agent learning for resource allocation dense heterogeneous 5G network. In 2015 International conference on engineering and telecommunication (EnT) (pp. 1–6). Bikov, E., & Botvich, D. (2015). Multi-agent learning for resource allocation dense heterogeneous 5G network. In 2015 International conference on engineering and telecommunication (EnT) (pp. 1–6).
14.
Zurück zum Zitat Hossain, E., Rasti, M., Tabassum, H., & Abdelnasser, A. (2014). Evolution toward 5G multi-tier cellular wireless networks: An interference management perspective. IEEE Wireless Communications, 21(3), 118–127.CrossRef Hossain, E., Rasti, M., Tabassum, H., & Abdelnasser, A. (2014). Evolution toward 5G multi-tier cellular wireless networks: An interference management perspective. IEEE Wireless Communications, 21(3), 118–127.CrossRef
15.
Zurück zum Zitat Tefft, J. R., & Kirsch, N. J. (2013). Accelerated learning in machine learning-based resource allocation methods for heterogenous networks. In 2013 IEEE 7th international conference on intelligent data acquisition and advanced computing systems (IDAACS) (Vol. 01, pp. 468–473). Tefft, J. R., & Kirsch, N. J. (2013). Accelerated learning in machine learning-based resource allocation methods for heterogenous networks. In 2013 IEEE 7th international conference on intelligent data acquisition and advanced computing systems (IDAACS) (Vol. 01, pp. 468–473).
16.
Zurück zum Zitat Hao, P., Yan, X., Li, J., Li, Y. N. R., & Wu, H. (2015). Flexible resource allocation in 5G ultra dense network with self-backhaul. In 2015 IEEE Globecom Workshops (GC Wkshps) (pp. 1–6). Hao, P., Yan, X., Li, J., Li, Y. N. R., & Wu, H. (2015). Flexible resource allocation in 5G ultra dense network with self-backhaul. In 2015 IEEE Globecom Workshops (GC Wkshps) (pp. 1–6).
17.
Zurück zum Zitat Saeed, A., Katranaras, E., Zoha, A., Imran, A., Imran, M. A., & Dianati, M. (2015). Energy efficient resource allocation for 5G heterogeneous networks. In 2015 IEEE 20th international workshop on computer aided modelling and design of communication links and networks (CAMAD), Guildford, 2015, pp. 119–123. https://doi.org/10.1109/CAMAD.2015.7390492. Saeed, A., Katranaras, E., Zoha, A., Imran, A., Imran, M. A., & Dianati, M. (2015). Energy efficient resource allocation for 5G heterogeneous networks. In 2015 IEEE 20th international workshop on computer aided modelling and design of communication links and networks (CAMAD), Guildford, 2015, pp. 119–123. https://​doi.​org/​10.​1109/​CAMAD.​2015.​7390492.
18.
Zurück zum Zitat Munir, H., Hassan, S. A., Pervaiz, H., & Ni, Q. (2016). A game theoretical network-assisted user-centric design for resource allocation in 5G heterogeneous networks. In 2016 IEEE 83rd vehicular technology conference (VTC Spring) (pp. 1–5). Munir, H., Hassan, S. A., Pervaiz, H., & Ni, Q. (2016). A game theoretical network-assisted user-centric design for resource allocation in 5G heterogeneous networks. In 2016 IEEE 83rd vehicular technology conference (VTC Spring) (pp. 1–5).
19.
Zurück zum Zitat Akdeniz, M. R., Liu, Y., Sun, S., Rangan, S., Rappaport, T. S., & Erkip, E. (2013). Millimeter wave channel modeling and cellular capacity evaluation. CoRR (Vol. 2013) (online). arXiv.org/abs/1312.4921 Akdeniz, M. R., Liu, Y., Sun, S., Rangan, S., Rappaport, T. S., & Erkip, E. (2013). Millimeter wave channel modeling and cellular capacity evaluation. CoRR (Vol. 2013) (online). arXiv.​org/​abs/​1312.​4921
20.
Zurück zum Zitat Doan, C., Emami, S., Sobel, D., Niknejad, A., & Brodersen, R. (2004). Design considerations for 60 GHz cmos radios. IEEE Communications Magazine, 42(12), 132–140.CrossRef Doan, C., Emami, S., Sobel, D., Niknejad, A., & Brodersen, R. (2004). Design considerations for 60 GHz cmos radios. IEEE Communications Magazine, 42(12), 132–140.CrossRef
21.
Zurück zum Zitat Doan, C., Emami, S., Niknejad, A., & Brodersen, R. (2005). Millimeter-wave cmos design. IEEE Journal of Solid-State Circuits, 40(1), 144–155.CrossRef Doan, C., Emami, S., Niknejad, A., & Brodersen, R. (2005). Millimeter-wave cmos design. IEEE Journal of Solid-State Circuits, 40(1), 144–155.CrossRef
22.
Zurück zum Zitat Rangan, S., Rappaport, T., & Erkip, E. (2014). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE, 102(3), 366–385.CrossRef Rangan, S., Rappaport, T., & Erkip, E. (2014). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE, 102(3), 366–385.CrossRef
23.
Zurück zum Zitat Bogale, T. E., & Le, L. B. (2016). Massive mimo and mmwave for 5G wireless hetnet: Potential benefits and challenges. IEEE Vehicular Technology Magazine, 11(1), 64–75.CrossRef Bogale, T. E., & Le, L. B. (2016). Massive mimo and mmwave for 5G wireless hetnet: Potential benefits and challenges. IEEE Vehicular Technology Magazine, 11(1), 64–75.CrossRef
24.
Zurück zum Zitat Niknam, S., Nasir, A. A., Mehrpouyan, H., & Natarajan, B. (2016). A multiband OFDMA heterogeneous network for millimeter wave 5G wireless applications. IEEE Access, 4, 5640–5648.CrossRef Niknam, S., Nasir, A. A., Mehrpouyan, H., & Natarajan, B. (2016). A multiband OFDMA heterogeneous network for millimeter wave 5G wireless applications. IEEE Access, 4, 5640–5648.CrossRef
25.
Zurück zum Zitat Wang, Y., Wang, X., & Wang, L. (2014). Low-complexity stackelberg game approach for energy-efficient resource allocation in heterogeneous networks. IEEE Communications Letters, 18(11), 2011–2014.CrossRef Wang, Y., Wang, X., & Wang, L. (2014). Low-complexity stackelberg game approach for energy-efficient resource allocation in heterogeneous networks. IEEE Communications Letters, 18(11), 2011–2014.CrossRef
26.
Zurück zum Zitat Tang, J., So, D. K. C., Alsusa, E., Hamdi, K. A., & Shojaeifard, A. (2015). Resource allocation for energy efficiency optimization in heterogeneous networks. IEEE Journal on Selected Areas in Communications, 33(10), 2104–2117.CrossRef Tang, J., So, D. K. C., Alsusa, E., Hamdi, K. A., & Shojaeifard, A. (2015). Resource allocation for energy efficiency optimization in heterogeneous networks. IEEE Journal on Selected Areas in Communications, 33(10), 2104–2117.CrossRef
27.
Zurück zum Zitat Carvalho, G. H. S., Woungang, I., Anpalagan, A., & Hossain, E. (2016). Qos-aware energy-efficient joint radio resource management in multi-rat heterogeneous networks. IEEE Transactions on Vehicular Technology, 65(8), 6343–6365.CrossRef Carvalho, G. H. S., Woungang, I., Anpalagan, A., & Hossain, E. (2016). Qos-aware energy-efficient joint radio resource management in multi-rat heterogeneous networks. IEEE Transactions on Vehicular Technology, 65(8), 6343–6365.CrossRef
31.
Zurück zum Zitat Pervaiz, H., Musavian, L., Ni, Q., & Ding, Z. (2015). Energy and spectrum efficient transmission techniques under QoS constraints toward green heterogeneous networks. IEEE Access, 3, 1655–1671.CrossRef Pervaiz, H., Musavian, L., Ni, Q., & Ding, Z. (2015). Energy and spectrum efficient transmission techniques under QoS constraints toward green heterogeneous networks. IEEE Access, 3, 1655–1671.CrossRef
32.
Zurück zum Zitat Adeogun, R. O. (2018). Joint resource allocation for dual-band heterogeneous wireless network. In IEEE wireless communications and networking conference (WCNC) Adeogun, R. O. (2018). Joint resource allocation for dual-band heterogeneous wireless network. In IEEE wireless communications and networking conference (WCNC)
33.
Zurück zum Zitat Akdeniz, M., Liu, Y., Samimi, M., Sun, S., Rangan, S., Rappaport, T., et al. (2014). Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications, 32(6), 1164–1179.CrossRef Akdeniz, M., Liu, Y., Samimi, M., Sun, S., Rangan, S., Rappaport, T., et al. (2014). Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications, 32(6), 1164–1179.CrossRef
34.
Zurück zum Zitat Fudenberg, D., & Tirole, J. (1993). Game theory. Cambridge: MIT Press.MATH Fudenberg, D., & Tirole, J. (1993). Game theory. Cambridge: MIT Press.MATH
35.
Zurück zum Zitat Cui, S., Goldsmith, A. J., & Bahai, A. (2005). Energy-constrained modulation optimization. IEEE Transactions on Wireless Communications, 4(5), 2349–2360.CrossRef Cui, S., Goldsmith, A. J., & Bahai, A. (2005). Energy-constrained modulation optimization. IEEE Transactions on Wireless Communications, 4(5), 2349–2360.CrossRef
36.
Zurück zum Zitat Amin, O., Bedeer, E., Ahmed, M. H., & Dobre, O. A. (2016). Energy efficiency-spectral efficiency tradeoff: A multiobjective optimization approach. IEEE Transactions on Vehicular Technology, 65(4), 1975–1981.CrossRef Amin, O., Bedeer, E., Ahmed, M. H., & Dobre, O. A. (2016). Energy efficiency-spectral efficiency tradeoff: A multiobjective optimization approach. IEEE Transactions on Vehicular Technology, 65(4), 1975–1981.CrossRef
38.
39.
Zurück zum Zitat Khoshkholgh, M. G., Yamchi, N. M., Navaie, K., Yanikomeroglu, H., Leung, V. C. M., & Shin, K. G. (2015). Radio resource allocation for OFDM-based dynamic spectrum sharing: Duality gap and time averaging. IEEE Journal on Selected Areas in Communications, 33(5), 848–864.CrossRef Khoshkholgh, M. G., Yamchi, N. M., Navaie, K., Yanikomeroglu, H., Leung, V. C. M., & Shin, K. G. (2015). Radio resource allocation for OFDM-based dynamic spectrum sharing: Duality gap and time averaging. IEEE Journal on Selected Areas in Communications, 33(5), 848–864.CrossRef
Metadaten
Titel
A Novel Game Theoretic Method for Efficient Downlink Resource Allocation in Dual Band 5G Heterogeneous Network
verfasst von
Ramoni O. Adeogun
Publikationsdatum
09.04.2018
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2018
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-018-5679-4

Weitere Artikel der Ausgabe 1/2018

Wireless Personal Communications 1/2018 Zur Ausgabe

Neuer Inhalt