Skip to main content
Erschienen in: Wireless Personal Communications 1/2021

01.03.2021

A Survey on Path Planning Techniques for Mobile Sink in IoT-Enabled Wireless Sensor Networks

verfasst von: Vaibhav Agarwal, Shashikala Tapaswi, Prasenjit Chanak

Erschienen in: Wireless Personal Communications | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recently, the Internet of Things (IoT) had emerged very rapidly and became the most important technology in today’s era. In an IoT-based environment, every physical object is connected to the internet. It has many applications in the fields of home automation, healthcare, military, weather forecasting, and industrial monitoring. Wireless Sensor Networks (WSNs) acting as a backbone of any IoT-based system where IoT-enabled sensor nodes are deployed to collect real-time data from the monitoring environment. IoT-enabled WSNs require well-designed network architecture so that the overall lifetime of the network increases since the nodes are battery-operated. The overall performance of the architecture depends on how the data is transmitted from the source nodes to the Base Station efficiently and effectively by minimizing the data losses. Static Sinks and Mobile Sinks are used for data gathering in IoT-enabled WSNs. But the performance of Mobile Sink (MS) based data gathering approaches are more efficient as compared to Static Sink based data gathering approaches. However, MS-based data gathering approaches have several drawbacks and limitations. Therefore, a detailed study of the existing state-of-the-art MS-based data gathering approaches can help further development in this direction. In this paper, the working of the sensor network is explained with its application in various fields. It also discusses the various path selection algorithm used for the MS to gather the information in the shortest possible time by minimizing the energy dissipation of each node to enhance the overall lifetime of the whole network. Some other factors also affect the path planning for a MS which is discussed and explained in the paper.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gu, Y., Ren, F., Ji, Y., & Li, J. (2015). The evolution of sink mobility management in wireless sensor networks: A survey. IEEE Communications Surveys and Tutorials, 18(1), 507–524. Gu, Y., Ren, F., Ji, Y., & Li, J. (2015). The evolution of sink mobility management in wireless sensor networks: A survey. IEEE Communications Surveys and Tutorials, 18(1), 507–524.
2.
Zurück zum Zitat Karl, H., & Willig, A. (2007). Protocols and architectures for wireless sensor networks. Hoboken: Wiley. Karl, H., & Willig, A. (2007). Protocols and architectures for wireless sensor networks. Hoboken: Wiley.
3.
Zurück zum Zitat Elhoseny, M., Tharwat, A., Yuan, X., & Hassanien, A. E. (2018). Optimizing k-coverage of mobile WSNs. Expert Systems with Applications, 92, 142–153. Elhoseny, M., Tharwat, A., Yuan, X., & Hassanien, A. E. (2018). Optimizing k-coverage of mobile WSNs. Expert Systems with Applications, 92, 142–153.
4.
Zurück zum Zitat Nguyen, H. T., & János, L. (2016). Position location technique in non-line-of-sight environments for wireless sensor networks. Journal of Computer Science and Cybernetics, 32(2), 93–111. Nguyen, H. T., & János, L. (2016). Position location technique in non-line-of-sight environments for wireless sensor networks. Journal of Computer Science and Cybernetics, 32(2), 93–111.
5.
Zurück zum Zitat Jain, S., Shah, R. C., Brunette, W., Borriello, G., & Roy, S. (2006). Exploiting mobility for energy-efficient data collection in wireless sensor networks. Mobile Networks and Applications, 11(3), 327–339. Jain, S., Shah, R. C., Brunette, W., Borriello, G., & Roy, S. (2006). Exploiting mobility for energy-efficient data collection in wireless sensor networks. Mobile Networks and Applications, 11(3), 327–339.
6.
Zurück zum Zitat Banerjee, T., Xie, B., Jun, J. H., & Agrawal, D. P. (2010). Increasing the lifetime of wireless sensor networks using controllable mobile cluster heads. Wireless Communications and Mobile Computing, 10(3), 313–336. Banerjee, T., Xie, B., Jun, J. H., & Agrawal, D. P. (2010). Increasing the lifetime of wireless sensor networks using controllable mobile cluster heads. Wireless Communications and Mobile Computing, 10(3), 313–336.
7.
Zurück zum Zitat Alkhatib, A. A. A. (2014). A review on forest fire detection techniques. International Journal of Distributed Sensor Networks, 10(3), 1–12. Alkhatib, A. A. A. (2014). A review on forest fire detection techniques. International Journal of Distributed Sensor Networks, 10(3), 1–12.
8.
Zurück zum Zitat Deebak, B. D., & Al-Turjman, F. (2020). A hybrid secure routing and monitoring mechanism in IoT-based wireless sensor networks. Ad Hoc Networks, 97, 102022. Deebak, B. D., & Al-Turjman, F. (2020). A hybrid secure routing and monitoring mechanism in IoT-based wireless sensor networks. Ad Hoc Networks, 97, 102022.
9.
Zurück zum Zitat Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38, 393–422. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38, 393–422.
10.
Zurück zum Zitat Mohamed, R. E., Saleh, A. I., Abdelrazzak, M., & Samra, A. S. (2018). Survey on wireless sensor network applications and energy-efficient routing protocols. Wireless Personal Communications, 101(2), 1019–1055. Mohamed, R. E., Saleh, A. I., Abdelrazzak, M., & Samra, A. S. (2018). Survey on wireless sensor network applications and energy-efficient routing protocols. Wireless Personal Communications, 101(2), 1019–1055.
11.
Zurück zum Zitat Ball, M. G., Qela, B., & Wesolkowski, S. (2016). A review of the use of computational intelligence in the design of military surveillance networks. Studies in Computational Intelligence, 621, 663–693. Ball, M. G., Qela, B., & Wesolkowski, S. (2016). A review of the use of computational intelligence in the design of military surveillance networks. Studies in Computational Intelligence, 621, 663–693.
12.
Zurück zum Zitat Yun, Y., Member, S., & Xia, Y. (2010). Maximizing the lifetime of wireless sensor networks with mobile sink in delay-tolerant applications. IEEE Transactions on Mobile Computing, 9(9), 1308–1318. Yun, Y., Member, S., & Xia, Y. (2010). Maximizing the lifetime of wireless sensor networks with mobile sink in delay-tolerant applications. IEEE Transactions on Mobile Computing, 9(9), 1308–1318.
13.
Zurück zum Zitat Sun, B., & Osborne, L. (2007). Intrusion detection techniques in mobile ad-hoc and wireless sensor networks (pp. 56–63). Beaumont: Lamar University. Sun, B., & Osborne, L. (2007). Intrusion detection techniques in mobile ad-hoc and wireless sensor networks (pp. 56–63). Beaumont: Lamar University.
14.
Zurück zum Zitat Wang, Y. W. Y., Wang, X. W. X., Bin Xie, B. X., Wang, D. W. D., & Agrawal, D. P. (2008). Intrusion detection in homogeneous and heterogeneous wireless sensor networks. IEEE Transactions on Mobile Computing, 7(6), 698–711. Wang, Y. W. Y., Wang, X. W. X., Bin Xie, B. X., Wang, D. W. D., & Agrawal, D. P. (2008). Intrusion detection in homogeneous and heterogeneous wireless sensor networks. IEEE Transactions on Mobile Computing, 7(6), 698–711.
15.
Zurück zum Zitat He, T., Krishnamurthy, S., Stankovic, J. A., Abdelzaher, T. F., Luo, L., & Stoleru, R. (2004). Energy-efficient surveillance system using wireless sensor networks. In Proceedings of the 2nd international conference on mobile systems, applications, and services—MobiSYS ’04. He, T., Krishnamurthy, S., Stankovic, J. A., Abdelzaher, T. F., Luo, L., & Stoleru, R. (2004). Energy-efficient surveillance system using wireless sensor networks. In Proceedings of the 2nd international conference on mobile systems, applications, and services—MobiSYS ’04.
16.
Zurück zum Zitat Zualkernam, I. A., Al-Ali, A. R., Jabbar, M. A., Zabalawi, I., & Wasfy, A. (2009). InfoPods: ZigBee-based remote information monitoring devices for smart homes. IEEE Transactions on Consumer Electronics, 55(3), 1221–1226. Zualkernam, I. A., Al-Ali, A. R., Jabbar, M. A., Zabalawi, I., & Wasfy, A. (2009). InfoPods: ZigBee-based remote information monitoring devices for smart homes. IEEE Transactions on Consumer Electronics, 55(3), 1221–1226.
17.
Zurück zum Zitat Wang, J., Yin, Y., Zhang, J., Lee, S., & Sherratt, R. S. (2009). Mobility-based energy-efficient and multi-sink algorithms for consumer home networks. IEEE Transactions on Consumer Electronics, 59(1), 78–84. Wang, J., Yin, Y., Zhang, J., Lee, S., & Sherratt, R. S. (2009). Mobility-based energy-efficient and multi-sink algorithms for consumer home networks. IEEE Transactions on Consumer Electronics, 59(1), 78–84.
18.
Zurück zum Zitat Kim, S., Sim, J. Y., & Yang, S. (2012). Vision-based cleaning area control for cleaning robots. IEEE Transactions on Consumer Electronics, 58(2), 685–690. Kim, S., Sim, J. Y., & Yang, S. (2012). Vision-based cleaning area control for cleaning robots. IEEE Transactions on Consumer Electronics, 58(2), 685–690.
19.
Zurück zum Zitat Choi, B. S., & Lee, J.-J. (2010). Sensor network-based localization algorithm using fusion sensor-agent for an indoor service robot. IEEE Transactions on Consumer Electronics, 56(3), 1457–1465. Choi, B. S., & Lee, J.-J. (2010). Sensor network-based localization algorithm using fusion sensor-agent for an indoor service robot. IEEE Transactions on Consumer Electronics, 56(3), 1457–1465.
20.
Zurück zum Zitat Lazarescu, M. T. (2013). Design of a WSN platform for long-term environmental monitoring for IoT applications. The IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(1), 45–54. Lazarescu, M. T. (2013). Design of a WSN platform for long-term environmental monitoring for IoT applications. The IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(1), 45–54.
21.
Zurück zum Zitat Yang, Z., Li, M., & Liu, Y. (2007). Sea depth measurement with restricted floating sensors. In Proceedings of the real-time systems symposium (Vol. 13, no. 1, pp. 469–478). Yang, Z., Li, M., & Liu, Y. (2007). Sea depth measurement with restricted floating sensors. In Proceedings of the real-time systems symposium (Vol. 13, no. 1, pp. 469–478).
22.
Zurück zum Zitat Spachos, P., & Hatzinakos, D. (2013). Prototypes of opportunistic wireless sensor networks supporting indoor air quality monitoring. In 2013 IEEE 10th consumer communications, and networks conference (pp. 851–852). Spachos, P., & Hatzinakos, D. (2013). Prototypes of opportunistic wireless sensor networks supporting indoor air quality monitoring. In 2013 IEEE 10th consumer communications, and networks conference (pp. 851–852).
23.
Zurück zum Zitat Magno, M., Polonelli, T., Benini, L., & Popovici, E. (2015). A low-cost, highly scalable wireless sensor network solution to achieve smart LED light control for green buildings. IEEE Sensors Journal, 15(5), 2963–2973. Magno, M., Polonelli, T., Benini, L., & Popovici, E. (2015). A low-cost, highly scalable wireless sensor network solution to achieve smart LED light control for green buildings. IEEE Sensors Journal, 15(5), 2963–2973.
24.
Zurück zum Zitat Kumar, P., Kumar, P., & Priyadarshini, P. (2012). Underwater acoustic sensor network for early warning generation. In Ocean (pp. 1–6). Kumar, P., Kumar, P., & Priyadarshini, P. (2012). Underwater acoustic sensor network for early warning generation. In Ocean (pp. 1–6).
25.
Zurück zum Zitat Al-Fares, M. S., & Sun, Z. (2009). Self-organizing routing protocol to achieve QoS in wireless sensor network for forest fire monitoring. In Proceedings of IEEE 9th Malaysia international conference on communications with a special workshop on digital TV contents, MICC 2009 (pp. 211–216). Al-Fares, M. S., & Sun, Z. (2009). Self-organizing routing protocol to achieve QoS in wireless sensor network for forest fire monitoring. In Proceedings of IEEE 9th Malaysia international conference on communications with a special workshop on digital TV contents, MICC 2009 (pp. 211–216).
27.
Zurück zum Zitat Werner-Allen, G., Lorincz, K., Welsh, M., Marcillo, O., Johnson, J., Ruiz, M., et al. (2006). Deploying a wireless sensor network on an active volcano. IEEE Internet Computing, 10(2), 18–25. Werner-Allen, G., Lorincz, K., Welsh, M., Marcillo, O., Johnson, J., Ruiz, M., et al. (2006). Deploying a wireless sensor network on an active volcano. IEEE Internet Computing, 10(2), 18–25.
28.
Zurück zum Zitat Nachtigall, J., & Redlich, J. (2011). Wireless alarming and routing protocol for earthquake early warning systems. In 4th IFIP international conference on new technologies, mobility, and security (pp. 1–6). Nachtigall, J., & Redlich, J. (2011). Wireless alarming and routing protocol for earthquake early warning systems. In 4th IFIP international conference on new technologies, mobility, and security (pp. 1–6).
29.
Zurück zum Zitat Al Ameen, M., Liu, J., & Kwak, K. (2012). Security and privacy issues in wireless sensor networks for healthcare applications. Journal of Medical Systems, 36(1), 93–101. Al Ameen, M., Liu, J., & Kwak, K. (2012). Security and privacy issues in wireless sensor networks for healthcare applications. Journal of Medical Systems, 36(1), 93–101.
31.
Zurück zum Zitat Lorincz, K., Malan, D. J., Jones, T. R., Nawoj, A., Clavel, A., Shnayder, V., et al. (2004). Sensor networks for emergency response: Challenges and opportunities. IEEE Pervasive Computing, 3, 16–23. Lorincz, K., Malan, D. J., Jones, T. R., Nawoj, A., Clavel, A., Shnayder, V., et al. (2004). Sensor networks for emergency response: Challenges and opportunities. IEEE Pervasive Computing, 3, 16–23.
32.
Zurück zum Zitat Mikhaylov, K., Tervonen, J., Heikkila, J., & Kansakoski, J. (2012). Wireless sensor networks in an industrial environment: Real-life evaluation results. In The 2nd Baltic Congress on future internet communications (BCFIC), 2012 (pp. 1–7). Mikhaylov, K., Tervonen, J., Heikkila, J., & Kansakoski, J. (2012). Wireless sensor networks in an industrial environment: Real-life evaluation results. In The 2nd Baltic Congress on future internet communications (BCFIC), 2012 (pp. 1–7).
33.
Zurück zum Zitat Hodge, V. J., Keefe, S. O., Weeks, M., & Moulds, A. (2015). Wireless sensor networks for condition monitoring in the railway industry: A survey. IEEE Transactions on Intelligent Transportation Systems, 16(3), 1088–1106. Hodge, V. J., Keefe, S. O., Weeks, M., & Moulds, A. (2015). Wireless sensor networks for condition monitoring in the railway industry: A survey. IEEE Transactions on Intelligent Transportation Systems, 16(3), 1088–1106.
34.
Zurück zum Zitat Lynch, J. P. (2006). A summary review of wireless sensors and sensor networks for structural health monitoring. Shock and Vibration Digest, 38(2), 91–128. Lynch, J. P. (2006). A summary review of wireless sensors and sensor networks for structural health monitoring. Shock and Vibration Digest, 38(2), 91–128.
35.
Zurück zum Zitat Felici-Castell, S., Garcia-Pineda, M., Segura-Garcia, J., Fayos-Jordan, R., & Lopez-Ballester, J. (2021). Adaptive live video streaming on low-cost wireless multihop networks for road traffic surveillance in smart cities. Future Generation Computer Systems, 115, 741–755. Felici-Castell, S., Garcia-Pineda, M., Segura-Garcia, J., Fayos-Jordan, R., & Lopez-Ballester, J. (2021). Adaptive live video streaming on low-cost wireless multihop networks for road traffic surveillance in smart cities. Future Generation Computer Systems, 115, 741–755.
36.
Zurück zum Zitat Hamami, L., & Nassereddine, B. (2020). Application of wireless sensor networks in the field of irrigation: A review. Computers and Electronics in Agriculture, 179, 105782. Hamami, L., & Nassereddine, B. (2020). Application of wireless sensor networks in the field of irrigation: A review. Computers and Electronics in Agriculture, 179, 105782.
37.
Zurück zum Zitat Peixoto, J. P. J., & Costa, D. G. (2017). Wireless visual sensor networks for smart city applications: A relevance-based approach for multiple sinks mobility. Future Generation Computer Systems, 76, 51–62. Peixoto, J. P. J., & Costa, D. G. (2017). Wireless visual sensor networks for smart city applications: A relevance-based approach for multiple sinks mobility. Future Generation Computer Systems, 76, 51–62.
38.
Zurück zum Zitat Khan, M. I., Gansterer, W. N., & Haring, G. (2013). Static vs. mobile sink: The influence of basic parameters on energy efficiency in wireless sensor networks. Computer Communications, 36(9), 965–978. Khan, M. I., Gansterer, W. N., & Haring, G. (2013). Static vs. mobile sink: The influence of basic parameters on energy efficiency in wireless sensor networks. Computer Communications, 36(9), 965–978.
39.
Zurück zum Zitat Zhang, C., Li, O., Liu, G., & Li, M. (2018). A practical data-gathering algorithm for lossy wireless sensor networks employing distributed data storage and compressive sensing. Sensors, 18, 3221. Zhang, C., Li, O., Liu, G., & Li, M. (2018). A practical data-gathering algorithm for lossy wireless sensor networks employing distributed data storage and compressive sensing. Sensors, 18, 3221.
40.
Zurück zum Zitat Zheng, H., Li, J., Feng, X., Guo, W., Chen, Z., & Xiong, N. (2017). Spatial-temporal data collection with compressive sensing in mobile sensor networks. Sensors, 17, 2575. Zheng, H., Li, J., Feng, X., Guo, W., Chen, Z., & Xiong, N. (2017). Spatial-temporal data collection with compressive sensing in mobile sensor networks. Sensors, 17, 2575.
41.
Zurück zum Zitat Lee, E., Park, S., Yu, F., & Kim, S.-H. (2010). Communication model and protocol based on multiple static sinks for supporting mobile users in wireless sensor networks. IEEE Transactions on Consumer Electronics, 56(3), 1652–1660. Lee, E., Park, S., Yu, F., & Kim, S.-H. (2010). Communication model and protocol based on multiple static sinks for supporting mobile users in wireless sensor networks. IEEE Transactions on Consumer Electronics, 56(3), 1652–1660.
42.
Zurück zum Zitat Naghibi, M., & Barati, H. (2020). Egrpm: Energy-efficient geographic routing protocol based on the mobile sink in wireless sensor networks. Sustainable Computing: Informatics and Systems, 25, 100377. Naghibi, M., & Barati, H. (2020). Egrpm: Energy-efficient geographic routing protocol based on the mobile sink in wireless sensor networks. Sustainable Computing: Informatics and Systems, 25, 100377.
43.
Zurück zum Zitat Wang, J., Cao, J., Sherratt, R. S., & Park, J. H. (2017). An improved ant colony optimization-based approach with mobile sink for wireless sensor networks. The Journal of Supercomputing, 74, 6633–6645. Wang, J., Cao, J., Sherratt, R. S., & Park, J. H. (2017). An improved ant colony optimization-based approach with mobile sink for wireless sensor networks. The Journal of Supercomputing, 74, 6633–6645.
44.
Zurück zum Zitat Wang J, Gao Y, Yin X, Li F, & Kim H-J. (2018). An enhanced PEGASIS algorithm with mobile sink support for wireless sensor networks. Wireless Communications and Mobile Computing. Wang J, Gao Y, Yin X, Li F, & Kim H-J. (2018). An enhanced PEGASIS algorithm with mobile sink support for wireless sensor networks. Wireless Communications and Mobile Computing.
45.
Zurück zum Zitat Rao, J., & Biswas, S. (2010). Network-assisted sink navigation for distributed data gathering: Stability and delay-energy trade-offs. Computer Communications, 33(2), 160–175. Rao, J., & Biswas, S. (2010). Network-assisted sink navigation for distributed data gathering: Stability and delay-energy trade-offs. Computer Communications, 33(2), 160–175.
46.
Zurück zum Zitat Hamida, E., & Chelius, G. (2008). Strategies for data dissemination to mobile sinks in wireless sensor networks. IEEE Wireless Communications, 15(6), 31–37. Hamida, E., & Chelius, G. (2008). Strategies for data dissemination to mobile sinks in wireless sensor networks. IEEE Wireless Communications, 15(6), 31–37.
47.
Zurück zum Zitat Chatzigiannakis, I., Kinalis, A., & Nikoletseas, S. (2008). Efficient data propagation strategies in wireless sensor networks using a single mobile sink. Computer Communications, 31(5), 896–914. Chatzigiannakis, I., Kinalis, A., & Nikoletseas, S. (2008). Efficient data propagation strategies in wireless sensor networks using a single mobile sink. Computer Communications, 31(5), 896–914.
48.
Zurück zum Zitat Khan, A. W., Abdullah, A. H., Anisi, M. H., & Bangas, J. I. (2014). A comprehensive study of data collection schemes using mobile sinks in wireless sensor networks. Journal of Sensors, 14(2), 2510–2548. Khan, A. W., Abdullah, A. H., Anisi, M. H., & Bangas, J. I. (2014). A comprehensive study of data collection schemes using mobile sinks in wireless sensor networks. Journal of Sensors, 14(2), 2510–2548.
49.
Zurück zum Zitat Chatzigiannakis, I., Kinalis, A., & Nikoletseas, S. (2006). Sink mobility protocols for data collection in wireless sensor networks. In Proceedings of the international workshop on mobility management and wireless access, MobiWac '06, Torremolinos, Spain (pp. 52–59). Chatzigiannakis, I., Kinalis, A., & Nikoletseas, S. (2006). Sink mobility protocols for data collection in wireless sensor networks. In Proceedings of the international workshop on mobility management and wireless access, MobiWac '06, Torremolinos, Spain (pp. 52–59).
50.
Zurück zum Zitat Giannakos, A., Karagiorgos, G., & Stavrakakis, I. (2009). A message-optimal sink mobility model for wireless sensor networks. In Proceeding of 8th international conference on networks (pp. 287–291). Giannakos, A., Karagiorgos, G., & Stavrakakis, I. (2009). A message-optimal sink mobility model for wireless sensor networks. In Proceeding of 8th international conference on networks (pp. 287–291).
51.
Zurück zum Zitat Wu, Y., Zhang, L., Wu, Y., & Niu, Z. (2006). Interest dissemination with directional antennas for wireless sensor networks with mobile sinks. In Proceedings of the 4th international conference on embedded networked sensor systems, SenSys ‘06, Boulder, Colorado, USA (pp. 99–111). Wu, Y., Zhang, L., Wu, Y., & Niu, Z. (2006). Interest dissemination with directional antennas for wireless sensor networks with mobile sinks. In Proceedings of the 4th international conference on embedded networked sensor systems, SenSys ‘06, Boulder, Colorado, USA (pp. 99–111).
52.
Zurück zum Zitat Luo, J. & Hubaux, J.-P. (2005). Joint mobility and routing for lifetime elongation in wireless sensor networks. In Proceedings of 24th IEEE INFOCOM, Miami, USA (pp. 1735–1746). Luo, J. & Hubaux, J.-P. (2005). Joint mobility and routing for lifetime elongation in wireless sensor networks. In Proceedings of 24th IEEE INFOCOM, Miami, USA (pp. 1735–1746).
53.
Zurück zum Zitat Basagni, S., Carosi, A., Melachrinoudis, E., Petrioli, C., & Wang, Z. M. (2008). Controlled sink mobility for prolonging wireless sensor networks’ lifetime. Journal of Wireless Networks, 14, 831–858. Basagni, S., Carosi, A., Melachrinoudis, E., Petrioli, C., & Wang, Z. M. (2008). Controlled sink mobility for prolonging wireless sensor networks’ lifetime. Journal of Wireless Networks, 14, 831–858.
54.
Zurück zum Zitat Bi, Y., Sun, L., Ma, J., Li, N., Khan, I. A., & Chen, C. (2007). HUMS: An autonomous moving strategy for mobile sinks in data-gathering sensor networks. EURASIP Journal on Wireless Communications and Networking, 2007, 1–15. Bi, Y., Sun, L., Ma, J., Li, N., Khan, I. A., & Chen, C. (2007). HUMS: An autonomous moving strategy for mobile sinks in data-gathering sensor networks. EURASIP Journal on Wireless Communications and Networking, 2007, 1–15.
55.
Zurück zum Zitat Vincze, Z., Vass, D., Vida, R., Vidács, A., & Telcs, A. (2007). Adaptive sink mobility in event-driven densely deployed wireless sensor networks. Ad Hoc and Sensor Wireless Networks, 3(2–3), 255–284. Vincze, Z., Vass, D., Vida, R., Vidács, A., & Telcs, A. (2007). Adaptive sink mobility in event-driven densely deployed wireless sensor networks. Ad Hoc and Sensor Wireless Networks, 3(2–3), 255–284.
56.
Zurück zum Zitat Kaur, G., Chanak, P., & Bhattacharya, M. (2020). Memetic algorithm-based data gathering scheme for IoT-enabled wireless sensor networks. IEEE Sensors Journal, 20(19), 11725–11734. Kaur, G., Chanak, P., & Bhattacharya, M. (2020). Memetic algorithm-based data gathering scheme for IoT-enabled wireless sensor networks. IEEE Sensors Journal, 20(19), 11725–11734.
57.
Zurück zum Zitat Mehto, A., Tapaswi, S., & Pattanaik, K. (2020). Virtual grid-based rendezvous point and sojourn location selection for energy and delay efficient data acquisition in wireless sensor networks with mobile sink. Wireless Networks, 26, 3763–3779. Mehto, A., Tapaswi, S., & Pattanaik, K. (2020). Virtual grid-based rendezvous point and sojourn location selection for energy and delay efficient data acquisition in wireless sensor networks with mobile sink. Wireless Networks, 26, 3763–3779.
58.
Zurück zum Zitat Wang, W., Shi, H., Wu, D., Huang, P., Gao, B., Wu, F., et al. (2017). Vd-pso: An efficient mobile sink routing algorithm in wireless sensor networks. Peer-to-Peer Networking and Applications, 10(3), 537–546. Wang, W., Shi, H., Wu, D., Huang, P., Gao, B., Wu, F., et al. (2017). Vd-pso: An efficient mobile sink routing algorithm in wireless sensor networks. Peer-to-Peer Networking and Applications, 10(3), 537–546.
59.
Zurück zum Zitat Dasgupta, R., & Yoon, S. (2017). An energy-efficient deadline-aware data-gathering scheme using multiple mobile data collectors. Sensors, 17(4), 742. Dasgupta, R., & Yoon, S. (2017). An energy-efficient deadline-aware data-gathering scheme using multiple mobile data collectors. Sensors, 17(4), 742.
60.
Zurück zum Zitat Huang, H., & Savkin, A. V. (2017). An energy-efficient approach for data collection in wireless sensor networks using public transportation vehicles. AEU-International Journal of Electronics and Communications, 75, 108–118. Huang, H., & Savkin, A. V. (2017). An energy-efficient approach for data collection in wireless sensor networks using public transportation vehicles. AEU-International Journal of Electronics and Communications, 75, 108–118.
61.
Zurück zum Zitat Kaswan, A., Nitesh, K., & Jana, P. K. (2017). Energy-efficient path selection for mobile sink and data gathering in wireless sensor networks. AEU-International Journal of Electronics and Communications, 73, 110–118. Kaswan, A., Nitesh, K., & Jana, P. K. (2017). Energy-efficient path selection for mobile sink and data gathering in wireless sensor networks. AEU-International Journal of Electronics and Communications, 73, 110–118.
62.
Zurück zum Zitat Xie, G., & Pan, F. (2016). Cluster-based routing for the mobile sink in wireless sensor networks with obstacles. IEEE Access, 4, 2019–2028. Xie, G., & Pan, F. (2016). Cluster-based routing for the mobile sink in wireless sensor networks with obstacles. IEEE Access, 4, 2019–2028.
63.
Zurück zum Zitat Alnuaimi, M., Shuaib, K., Alnuaimi, K., & Abdel-Hafez, M. (2015). Data gathering in delay-tolerant wireless sensor networks using a ferry. Sensors, 15(10), 25809–25830. Alnuaimi, M., Shuaib, K., Alnuaimi, K., & Abdel-Hafez, M. (2015). Data gathering in delay-tolerant wireless sensor networks using a ferry. Sensors, 15(10), 25809–25830.
64.
Zurück zum Zitat Mottaghi, S., & Zahabi, M. R. (2015). Optimizing the leach clustering algorithm with mobile sink and rendezvous nodes. AEU-International Journal of Electronics and Communications, 69(2), 507–514. Mottaghi, S., & Zahabi, M. R. (2015). Optimizing the leach clustering algorithm with mobile sink and rendezvous nodes. AEU-International Journal of Electronics and Communications, 69(2), 507–514.
65.
Zurück zum Zitat Xie, G., Li, C., & Pan, F. (2014). Energy-efficient scheduling for mobile sensors using connection graphs in a hybrid wireless sensor network with obstacles. International Journal of Distributed Sensor Networks, 10(6), 139731. Xie, G., Li, C., & Pan, F. (2014). Energy-efficient scheduling for mobile sensors using connection graphs in a hybrid wireless sensor network with obstacles. International Journal of Distributed Sensor Networks, 10(6), 139731.
66.
Zurück zum Zitat Lee, E., Park, S., Oh, S., & Kim, S.-H. (2014). Rendezvous-based data dissemination for supporting mobile sinks in multi-hop clustered wireless sensor networks. Wireless networks, 20(8), 2319–2336. Lee, E., Park, S., Oh, S., & Kim, S.-H. (2014). Rendezvous-based data dissemination for supporting mobile sinks in multi-hop clustered wireless sensor networks. Wireless networks, 20(8), 2319–2336.
67.
Zurück zum Zitat Wang, Y., & Chen, K. (2019). Efficient path planning for a mobile sink to reliably gather data from sensors with diverse sensing rates and limited buffers. IEEE Transactions on Mobile Computing, 18(7), 1527–1540. Wang, Y., & Chen, K. (2019). Efficient path planning for a mobile sink to reliably gather data from sensors with diverse sensing rates and limited buffers. IEEE Transactions on Mobile Computing, 18(7), 1527–1540.
68.
Zurück zum Zitat Wen, W., Zhao, S., Shang, C., & Chang, C.-Y. (2017). Eapc: Energy-aware path construction for data collection using mobile sink in wireless sensor networks. IEEE Sensors Journal, 18(2), 890–901. Wen, W., Zhao, S., Shang, C., & Chang, C.-Y. (2017). Eapc: Energy-aware path construction for data collection using mobile sink in wireless sensor networks. IEEE Sensors Journal, 18(2), 890–901.
69.
Zurück zum Zitat Sharma, S., Puthal, D., Jena, S. K., Zomaya, A. Y., & Ranjan, R. (2017). Rendezvous-based routing protocol for wireless sensor networks with mobile sink. The Journal of Supercomputing, 73(3), 1168–1188. Sharma, S., Puthal, D., Jena, S. K., Zomaya, A. Y., & Ranjan, R. (2017). Rendezvous-based routing protocol for wireless sensor networks with mobile sink. The Journal of Supercomputing, 73(3), 1168–1188.
70.
Zurück zum Zitat Chang, J.-Y., & Shen, T.-H. (2016). An efficient tree-based power saving scheme for wireless sensor networks with mobile sink. IEEE Sensors Journal, 16(20), 7545–7557. Chang, J.-Y., & Shen, T.-H. (2016). An efficient tree-based power saving scheme for wireless sensor networks with mobile sink. IEEE Sensors Journal, 16(20), 7545–7557.
71.
Zurück zum Zitat Zhu, C., Wu, S., Han, G., Shu, L., & Wu, H. (2015). A tree-cluster-based data-gathering algorithm for industrial WSNs with a mobile sink. IEEE Access, 3, 381–396. Zhu, C., Wu, S., Han, G., Shu, L., & Wu, H. (2015). A tree-cluster-based data-gathering algorithm for industrial WSNs with a mobile sink. IEEE Access, 3, 381–396.
72.
Zurück zum Zitat Ghosh, N., & Banerjee, I. (2015). An energy-efficient path determination strategy for mobile data collectors in wireless sensor networks. Computers and Electrical Engineering, 48, 417–435. Ghosh, N., & Banerjee, I. (2015). An energy-efficient path determination strategy for mobile data collectors in wireless sensor networks. Computers and Electrical Engineering, 48, 417–435.
73.
Zurück zum Zitat Salarian, H., Chin, K.-W., & Naghdy, F. (2013). An energy-efficient mobile-sink path selection strategy for wireless sensor networks. IEEE Transactions on Vehicular Technology, 63(5), 2407–2419. Salarian, H., Chin, K.-W., & Naghdy, F. (2013). An energy-efficient mobile-sink path selection strategy for wireless sensor networks. IEEE Transactions on Vehicular Technology, 63(5), 2407–2419.
74.
Zurück zum Zitat Ma, M., Yang, Y., & Zhao, M. (2013). Tour planning for mobile data-gathering mechanisms in wireless sensor networks. IEEE Transactions on Vehicular Technology, 62(4), 1472–1483. Ma, M., Yang, Y., & Zhao, M. (2013). Tour planning for mobile data-gathering mechanisms in wireless sensor networks. IEEE Transactions on Vehicular Technology, 62(4), 1472–1483.
75.
Zurück zum Zitat Tao, J., He, L., Zhuang, Y., Pan, J., & Ahmadi, M. (2013). Sweeping and active skipping in wireless sensor networks with mobile elements. In Proceedings of IEEE GLOBECOM, Dec. 2012 (pp. 106–111). Tao, J., He, L., Zhuang, Y., Pan, J., & Ahmadi, M. (2013). Sweeping and active skipping in wireless sensor networks with mobile elements. In Proceedings of IEEE GLOBECOM, Dec. 2012 (pp. 106–111).
76.
Zurück zum Zitat Zhao, M., & Yang, Y. (2012). Bounded relay hop mobile data gathering in wireless sensor networks. IEEE Transactions on Computers, 61(2), 265–277.MathSciNetMATH Zhao, M., & Yang, Y. (2012). Bounded relay hop mobile data gathering in wireless sensor networks. IEEE Transactions on Computers, 61(2), 265–277.MathSciNetMATH
Metadaten
Titel
A Survey on Path Planning Techniques for Mobile Sink in IoT-Enabled Wireless Sensor Networks
verfasst von
Vaibhav Agarwal
Shashikala Tapaswi
Prasenjit Chanak
Publikationsdatum
01.03.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08204-w

Weitere Artikel der Ausgabe 1/2021

Wireless Personal Communications 1/2021 Zur Ausgabe

Neuer Inhalt