Skip to main content
Erschienen in: Experimental Mechanics 2/2018

13.11.2017

Specimen Size and Strain Rate Effects on the Compressive Behavior of Concrete

verfasst von: B. E. Martin, W. F. Heard, C. M. Loeffler, X. Nie

Erschienen in: Experimental Mechanics | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Three high-performance concrete (HPC) materials with different specimen geometries were characterized using Kolsky compression bar techniques to study the strain rate and specimen size effects on their uniaxial compressive strength. A large-diameter Kolsky bar and recently established annular pulse shaping technique were used to achieve dynamic stress equilibrium and constant strain-rate deformation in the experiments. A complimentary effort was conducted using a 19-mm-diameter Kolsky compression bar to understand the strain rate and specimen size effects on failure strength and dynamic increase factor (DIF) for concrete. It was found that, for all three concrete materials investigated, the failure strength is highly dependent on the specimen geometry, however such a relationship is not apparent for the DIF. The DIF observed in this study shows significantly lower values compared to historical data, which may indicate the importance of well-controlled dynamic testing conditions on the accuracy and validity of experimental results for concrete materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kesler CE, Naus DJ, Lott JL (1971) Fracture mechanics-its applicability to concrete. Proc. Int. Conf. Mechanical behavior of materials, vol. IV, 1972, pp 113–124. The Soc. Mater. Sci. Kyoto Kesler CE, Naus DJ, Lott JL (1971) Fracture mechanics-its applicability to concrete. Proc. Int. Conf. Mechanical behavior of materials, vol. IV, 1972, pp 113–124. The Soc. Mater. Sci. Kyoto
2.
Zurück zum Zitat Leicester RH (1969) The size effect of notches. Proc. 2nd Australasian Conference on Mechanics of Structural. Materials, pp 4.1–4.20, Melbourne Leicester RH (1969) The size effect of notches. Proc. 2nd Australasian Conference on Mechanics of Structural. Materials, pp 4.1–4.20, Melbourne
3.
Zurück zum Zitat Walsh PF (1972) Fracture of plain concrete. Indian Concrete Journal 46(11) Walsh PF (1972) Fracture of plain concrete. Indian Concrete Journal 46(11)
4.
Zurück zum Zitat Walsh PF (1976) Crack initiation in plain concrete. Mag Concr Res 28:37–41CrossRef Walsh PF (1976) Crack initiation in plain concrete. Mag Concr Res 28:37–41CrossRef
5.
Zurück zum Zitat Bazant ZP (1984) Size effect in blunt fracture: concrete, rock, metal. Journal of Engineering Mechanics, ASCE 110:518–535CrossRef Bazant ZP (1984) Size effect in blunt fracture: concrete, rock, metal. Journal of Engineering Mechanics, ASCE 110:518–535CrossRef
6.
Zurück zum Zitat Bazant ZP (1999) Size effect on structural strength: a review. Arch Appl Mech 69:703–725CrossRefMATH Bazant ZP (1999) Size effect on structural strength: a review. Arch Appl Mech 69:703–725CrossRefMATH
7.
Zurück zum Zitat Zhou FP, Balendran RV, Jeary AP (1998) Size effect on flexural, split tensile, and torsional strengths of high-strength concrete. Cem Concr Res 28:1725–1736CrossRef Zhou FP, Balendran RV, Jeary AP (1998) Size effect on flexural, split tensile, and torsional strengths of high-strength concrete. Cem Concr Res 28:1725–1736CrossRef
8.
Zurück zum Zitat Issa SA, Islam MS, Issa MA, Yousif AA, Issa MA (2000) Specimen and aggregate size effect on concrete compressive strength. Cement, Concrete and Aggregates 22:103–115CrossRef Issa SA, Islam MS, Issa MA, Yousif AA, Issa MA (2000) Specimen and aggregate size effect on concrete compressive strength. Cement, Concrete and Aggregates 22:103–115CrossRef
9.
Zurück zum Zitat Kim JK, Yi ST (2002) Application of size effect to compressive strength of concrete members. Sadhana 27:467–484CrossRef Kim JK, Yi ST (2002) Application of size effect to compressive strength of concrete members. Sadhana 27:467–484CrossRef
10.
Zurück zum Zitat Ince R, Arici E (2004) Size effect in bearing strength of concrete cubes. Constr Build Mater 18:603–609CrossRef Ince R, Arici E (2004) Size effect in bearing strength of concrete cubes. Constr Build Mater 18:603–609CrossRef
11.
Zurück zum Zitat Yazici S, Sezer GI (2007) The effect of cylindrical specimen size on the compressive strength of concrete. Build Environ 42:2417–2420CrossRef Yazici S, Sezer GI (2007) The effect of cylindrical specimen size on the compressive strength of concrete. Build Environ 42:2417–2420CrossRef
12.
Zurück zum Zitat del Viso JR, Carmona JR, Ruiz G (2008) Shape and size effects on compressive strength of high-strength concrete. Cem Concr Res 38:386–395CrossRef del Viso JR, Carmona JR, Ruiz G (2008) Shape and size effects on compressive strength of high-strength concrete. Cem Concr Res 38:386–395CrossRef
13.
Zurück zum Zitat Udoeyo FF, Brooks R, Udo-Inyang P, Kehinde AM (2010) Influence of specimen geometry on the strengths of laterized concrete. International Journal of Research and Reviews in Applied Science 3:8–17 Udoeyo FF, Brooks R, Udo-Inyang P, Kehinde AM (2010) Influence of specimen geometry on the strengths of laterized concrete. International Journal of Research and Reviews in Applied Science 3:8–17
14.
Zurück zum Zitat Rao MVK, Kumar PR, Srinivas B (2011) Effect of size and shape of specimen on compressive strength of glass fiber reinforced concrete (GFRC). Architecture and Civil Engineering 9:1–9CrossRef Rao MVK, Kumar PR, Srinivas B (2011) Effect of size and shape of specimen on compressive strength of glass fiber reinforced concrete (GFRC). Architecture and Civil Engineering 9:1–9CrossRef
15.
Zurück zum Zitat Che Y, Ban S, Cui J, Chen G, Song Y (2011) Effect of specimen shape and size on compressive strength of concrete. Adv Mater Res 163-167:1375–1379CrossRef Che Y, Ban S, Cui J, Chen G, Song Y (2011) Effect of specimen shape and size on compressive strength of concrete. Adv Mater Res 163-167:1375–1379CrossRef
16.
Zurück zum Zitat Al-Sahawneh EI (2013) Size effect and strength correction factors for normal weight concrete specimens under uniaxial compression stress. Contemporary Engineering Sciences 6:57–68CrossRef Al-Sahawneh EI (2013) Size effect and strength correction factors for normal weight concrete specimens under uniaxial compression stress. Contemporary Engineering Sciences 6:57–68CrossRef
17.
Zurück zum Zitat Zi G, Kim J, Bazant ZP (2014) Size effect on biaxial flexural strength of concrete. ACI Mater J 111:1–8 Zi G, Kim J, Bazant ZP (2014) Size effect on biaxial flexural strength of concrete. ACI Mater J 111:1–8
18.
Zurück zum Zitat Kim JK (1990) Size effect in concrete specimens with dissimilar initial cracks. Mag Concr Res 42(153):233–238CrossRef Kim JK (1990) Size effect in concrete specimens with dissimilar initial cracks. Mag Concr Res 42(153):233–238CrossRef
19.
Zurück zum Zitat Bazant ZP, Xiang Y (1997) Size effect in compression fracture: splitting crack band propagation. J Eng Mech 123:162–172CrossRef Bazant ZP, Xiang Y (1997) Size effect in compression fracture: splitting crack band propagation. J Eng Mech 123:162–172CrossRef
20.
Zurück zum Zitat Watstein D (1953) Effect of straining rate on the compressive strength and elastic properties of concrete. ACI Journal Proceedings 49(4):729–744 Watstein D (1953) Effect of straining rate on the compressive strength and elastic properties of concrete. ACI Journal Proceedings 49(4):729–744
21.
Zurück zum Zitat Goldsmith W, Kenner VH, Ricketts TE (1966) Dynamic behavior of concrete. Exp Mech 66:65–69CrossRef Goldsmith W, Kenner VH, Ricketts TE (1966) Dynamic behavior of concrete. Exp Mech 66:65–69CrossRef
22.
Zurück zum Zitat Hughes BP, Gregory R (1972) Concrete subjected to high rates of loading in compression. Mag Concr Res 24:25–36CrossRef Hughes BP, Gregory R (1972) Concrete subjected to high rates of loading in compression. Mag Concr Res 24:25–36CrossRef
23.
Zurück zum Zitat Ross CA, Thompson PY, Tedesco JW (1989) Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression. ACI Mater J 86:475–481 Ross CA, Thompson PY, Tedesco JW (1989) Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression. ACI Mater J 86:475–481
24.
Zurück zum Zitat Bischoff PH, Perry SH (1991) Compressive behavior of concrete at high strain rates. RIELM Mater Struct 24:425–450CrossRef Bischoff PH, Perry SH (1991) Compressive behavior of concrete at high strain rates. RIELM Mater Struct 24:425–450CrossRef
25.
Zurück zum Zitat Ross CA, Jerome DM, Tedesco JW, Hughes ML (1996) Moisture and strain rate effects on concrete strength. ACI Mater J 93:293–300 Ross CA, Jerome DM, Tedesco JW, Hughes ML (1996) Moisture and strain rate effects on concrete strength. ACI Mater J 93:293–300
26.
Zurück zum Zitat Grote DL, Park SW, Zhou M (2001) Dynamic behavior of concrete at high strain rates and pressures: I. Experimental characterization. Int J Impact Eng 25:869–886CrossRef Grote DL, Park SW, Zhou M (2001) Dynamic behavior of concrete at high strain rates and pressures: I. Experimental characterization. Int J Impact Eng 25:869–886CrossRef
27.
Zurück zum Zitat Reinhardt HW (1982) Concrete under impact loading: tensile strength and bond. HERON 27(3):1–48 Reinhardt HW (1982) Concrete under impact loading: tensile strength and bond. HERON 27(3):1–48
28.
Zurück zum Zitat Cadoni E, Albertini C, Solomos G (2006) Analysis of the concrete behavior in tension at high-strain rate by a modified Hopkinson bar in support of impact resistant structural design. J Phys IV France 134:647–652CrossRef Cadoni E, Albertini C, Solomos G (2006) Analysis of the concrete behavior in tension at high-strain rate by a modified Hopkinson bar in support of impact resistant structural design. J Phys IV France 134:647–652CrossRef
29.
Zurück zum Zitat John R, Antoun T, Rajendran AM (1991) Effect of strain rate and size on tensile strength of concrete. Shock Compression of Condensed Mater In: Schmidt SC, Dick RD, Forbes JW, Tasker DG (eds) Elsevier, amsterdam, pp 501–504 John R, Antoun T, Rajendran AM (1991) Effect of strain rate and size on tensile strength of concrete. Shock Compression of Condensed Mater In: Schmidt SC, Dick RD, Forbes JW, Tasker DG (eds) Elsevier, amsterdam, pp 501–504
30.
Zurück zum Zitat Lambert DE, Ross CA (2000) Strain rate effects on dynamic fracture and strength. Int J Impact Eng 24:985–998CrossRef Lambert DE, Ross CA (2000) Strain rate effects on dynamic fracture and strength. Int J Impact Eng 24:985–998CrossRef
31.
Zurück zum Zitat Klepacako JR, Brara A (2001) An experimental method for dynamic tensile testing of concrete by spalling. Int J Impact Eng 25:387–409CrossRef Klepacako JR, Brara A (2001) An experimental method for dynamic tensile testing of concrete by spalling. Int J Impact Eng 25:387–409CrossRef
32.
Zurück zum Zitat Erzar B, Forquin P (2010) An experimental method to determine the tensile strength of concrete at high rates of strain. Exp Mech 50:941–955CrossRefMATH Erzar B, Forquin P (2010) An experimental method to determine the tensile strength of concrete at high rates of strain. Exp Mech 50:941–955CrossRefMATH
33.
Zurück zum Zitat Malvar LJ, Crowford JE (1998) Dynamic increase factors for concrete. Twenty-Eighth DDESB Seminar, Orlando Malvar LJ, Crowford JE (1998) Dynamic increase factors for concrete. Twenty-Eighth DDESB Seminar, Orlando
34.
Zurück zum Zitat Li QM, Meng H (2003) About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. Int J Solids Struct 40:343–360CrossRef Li QM, Meng H (2003) About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. Int J Solids Struct 40:343–360CrossRef
35.
Zurück zum Zitat Heard WF, Martin BE, Nie X, Slawson T, Basu PK (2014) Annular pulse shaping technique for large-diameter Kolsky bar experiments on concrete. Exp Mech 54:1343–1354CrossRef Heard WF, Martin BE, Nie X, Slawson T, Basu PK (2014) Annular pulse shaping technique for large-diameter Kolsky bar experiments on concrete. Exp Mech 54:1343–1354CrossRef
36.
Zurück zum Zitat Heard WF (2014) Development and multi-scale characterization of a self-consolidating high-strength concrete for quasi-static and transient loads. Vanderbilt University Heard WF (2014) Development and multi-scale characterization of a self-consolidating high-strength concrete for quasi-static and transient loads. Vanderbilt University
37.
Zurück zum Zitat Williams EM, Graham SS, Reed PA, Rushing TS (2009) Laboratory characterization of Cor-Tuf concrete with and without steel fibers. ERDC/GSL TR 09–22, U.S. Army Engineer Research and Development Center Williams EM, Graham SS, Reed PA, Rushing TS (2009) Laboratory characterization of Cor-Tuf concrete with and without steel fibers. ERDC/GSL TR 09–22, U.S. Army Engineer Research and Development Center
38.
39.
Zurück zum Zitat O’Neil EF (2008) On engineering the microstructure of high-performance concretes to improve strength, rheology, toughness, and frangibility. Northwestern University O’Neil EF (2008) On engineering the microstructure of high-performance concretes to improve strength, rheology, toughness, and frangibility. Northwestern University
40.
Zurück zum Zitat Ranade R, Li VC, Heard WF, Williams BA (2017) Impact resistance of high strength-high ductility concrete. Cem Concr Res 98:24–35CrossRef Ranade R, Li VC, Heard WF, Williams BA (2017) Impact resistance of high strength-high ductility concrete. Cem Concr Res 98:24–35CrossRef
41.
Zurück zum Zitat Duffy J, Campbell JD, Hawley RH (1971) On the use of a torsional split Hopkinson bar to study rate effects in 1100-0 aluminum. ASME Trans J Appl Mech 37:83–91CrossRef Duffy J, Campbell JD, Hawley RH (1971) On the use of a torsional split Hopkinson bar to study rate effects in 1100-0 aluminum. ASME Trans J Appl Mech 37:83–91CrossRef
42.
Zurück zum Zitat Chen W, Song B (2011) Split Hopkinson (Kolsky) bar: design, testing and applications. Springer, BerlinCrossRefMATH Chen W, Song B (2011) Split Hopkinson (Kolsky) bar: design, testing and applications. Springer, BerlinCrossRefMATH
43.
Zurück zum Zitat Nemat-Nasser S, Issac JB, Starrett JE (1991) Hopkinson techniques for dynamic recovery experiments. Proc R Soc Lond A 435(1894):371–391CrossRef Nemat-Nasser S, Issac JB, Starrett JE (1991) Hopkinson techniques for dynamic recovery experiments. Proc R Soc Lond A 435(1894):371–391CrossRef
44.
Zurück zum Zitat Frew DJ, Forrestal MJ, Chen W (2001) A split Hopkinson bar technique to determine compressive stress-strain data for rock materials. Exp Mech 41:40–46CrossRef Frew DJ, Forrestal MJ, Chen W (2001) A split Hopkinson bar technique to determine compressive stress-strain data for rock materials. Exp Mech 41:40–46CrossRef
45.
Zurück zum Zitat Frew DJ, Forrestal MJ, Chen W (2002) Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Exp Mech 42:93–106CrossRef Frew DJ, Forrestal MJ, Chen W (2002) Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Exp Mech 42:93–106CrossRef
46.
Zurück zum Zitat Warren T, Forrestal MJ (2010) Comments on the effect of radial inertia in the Kolsky bar test for an incompressible material. Exp Mech 50:1253–1255CrossRef Warren T, Forrestal MJ (2010) Comments on the effect of radial inertia in the Kolsky bar test for an incompressible material. Exp Mech 50:1253–1255CrossRef
47.
Zurück zum Zitat ASTM C42M-13 (2013) Standard test method for obtaining and testing drilled cores and sawed beams of concrete. ASTM International, West Conshohocken ASTM C42M-13 (2013) Standard test method for obtaining and testing drilled cores and sawed beams of concrete. ASTM International, West Conshohocken
48.
Zurück zum Zitat ASTM C39M-04 (2004) Standard test method for compressive strength of cylindrical concrete specimens. ASTM International, West Conshohocken ASTM C39M-04 (2004) Standard test method for compressive strength of cylindrical concrete specimens. ASTM International, West Conshohocken
Metadaten
Titel
Specimen Size and Strain Rate Effects on the Compressive Behavior of Concrete
verfasst von
B. E. Martin
W. F. Heard
C. M. Loeffler
X. Nie
Publikationsdatum
13.11.2017
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 2/2018
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-017-0355-2

Weitere Artikel der Ausgabe 2/2018

Experimental Mechanics 2/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.