Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 5/2016

01.05.2016 | Original Article

Electrical resistance of human soft tissue sarcomas: an ex vivo study on surgical specimens

verfasst von: L. G. Campana, M. Cesari, F. Dughiero, M. Forzan, M. Rastrelli, C. R. Rossi, E. Sieni, A. L. Tosi

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 5/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a study about electrical resistance, which using fixed electrode geometry could be correlated to the tissue resistivity, of different histological types of human soft tissue sarcomas measured during electroporation. The same voltage pulse sequence was applied to the tumor mass shortly after surgical resection by means of a voltage pulse generator currently used in clinical practice for electrochemotherapy that uses reversible electroporation. The voltage pulses were applied by means of a standard hexagonal electrode composed by seven, 20-mm-long equispaced needles. Irrespective of tumor size, the electrode applies electric pulses to the same volume of tissue. The resistance value was computed from the voltage and current recorded by the pulse generator, and it was correlated with the histological characteristics of the tumor tissue which was assessed by a dedicated pathologist. Some differences in resistance values, which could be correlated to a difference in tissue resistivity, were noticed according to sarcoma histotype. Lipomatous tumors (i.e., those rich in adipose tissue) displayed the highest resistance values (up to 1700 Ω), whereas in the other soft tissue sarcomas, such as those originating from muscle, nerve sheath, or fibrous tissue, the electrical resistance measured was between 40 and 110 Ω. A variability in resistance was found also within the same histotype. Among lipomatous tumors, the presence of myxoid tissue between adipocytes reduced the electrical resistance (e.g., 50–100 Ω). This work represents the first step in order to explore the difference in tissue electrical properties of STS. These results may be used to verify whether tuning electric field intensity according to the specific STS histotype could improve tissue electroporation and ultimately treatment efficacy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Agoramurthy P, Campana L, Sundararajan R (2011) Finite element modeling and analysis of human breast tissue for electrochemotherapy. In: 2011 annual report conference on electrical insulation and dielectric phenomena (CEIDP). IEEE, pp 191–194 Agoramurthy P, Campana L, Sundararajan R (2011) Finite element modeling and analysis of human breast tissue for electrochemotherapy. In: 2011 annual report conference on electrical insulation and dielectric phenomena (CEIDP). IEEE, pp 191–194
7.
Zurück zum Zitat Campana L, Valpione S, Falci C et al (2012) The activity and safety of electrochemotherapy in persistent chest wall recurrence from breast cancer after mastectomy: a phase-II study. Breast Cancer Res Treat 134:1169–1178. doi:10.1007/s10549-012-2095-4 CrossRefPubMed Campana L, Valpione S, Falci C et al (2012) The activity and safety of electrochemotherapy in persistent chest wall recurrence from breast cancer after mastectomy: a phase-II study. Breast Cancer Res Treat 134:1169–1178. doi:10.​1007/​s10549-012-2095-4 CrossRefPubMed
8.
Zurück zum Zitat Campana L, Bianchi G, Mocellin S et al (2014) Electrochemotherapy treatment of locally advanced and metastatic soft tissue sarcomas: results of a non-comparative phase II study. World J Surg 38(4):813–822. doi:10.1007/s00268-013-2321-1 CrossRefPubMed Campana L, Bianchi G, Mocellin S et al (2014) Electrochemotherapy treatment of locally advanced and metastatic soft tissue sarcomas: results of a non-comparative phase II study. World J Surg 38(4):813–822. doi:10.​1007/​s00268-013-2321-1 CrossRefPubMed
9.
Zurück zum Zitat Campana L, Dughiero F, Forzan M et al (2015) Electrical resistance of tumor tissue during electroporation: an ex-vivo study on human lipomatous tumors. In: Lacković I, Vasic D (eds) 6th European conference of the international federation for medical and biological engineering. Springer International Publishing, Berlin, pp 569–572 Campana L, Dughiero F, Forzan M et al (2015) Electrical resistance of tumor tissue during electroporation: an ex-vivo study on human lipomatous tumors. In: Lacković I, Vasic D (eds) 6th European conference of the international federation for medical and biological engineering. Springer International Publishing, Berlin, pp 569–572
11.
Zurück zum Zitat Corovic S, Zupanic A, Miklavcic D (2008) Numerical modeling and optimization of electric field distribution in subcutaneous tumor treated with electrochemotherapy using needle electrodes. IEEE Trans Plasma Sci 36:1665–1672CrossRef Corovic S, Zupanic A, Miklavcic D (2008) Numerical modeling and optimization of electric field distribution in subcutaneous tumor treated with electrochemotherapy using needle electrodes. IEEE Trans Plasma Sci 36:1665–1672CrossRef
12.
Zurück zum Zitat Corovic S, Lackovic I, Sustaric P et al (2013) Modeling of electric field distribution in tissues during electroporation. Biomed Eng OnLine 12:16CrossRefPubMedPubMedCentral Corovic S, Lackovic I, Sustaric P et al (2013) Modeling of electric field distribution in tissues during electroporation. Biomed Eng OnLine 12:16CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Davalos RV, Rubinsky B, Otten DM (2002) A feasibility study for electrical impedance tomography as a means to monitor tissue electroporation for molecular medicine. IEEE Trans Biomed Eng 49:400–403. doi:10.1109/10.991168 CrossRefPubMed Davalos RV, Rubinsky B, Otten DM (2002) A feasibility study for electrical impedance tomography as a means to monitor tissue electroporation for molecular medicine. IEEE Trans Biomed Eng 49:400–403. doi:10.​1109/​10.​991168 CrossRefPubMed
16.
Zurück zum Zitat Dimbylow PJ (2000) Current densities in a 2 mm resolution anatomically realistic model of the body induced by low frequency electric fields. Phys Med Biol 45:1013–1022CrossRefPubMed Dimbylow PJ (2000) Current densities in a 2 mm resolution anatomically realistic model of the body induced by low frequency electric fields. Phys Med Biol 45:1013–1022CrossRefPubMed
17.
Zurück zum Zitat Dughiero F, Forzan M, Sieni E (2010) Simple 3D FEM models for evaluation of EM exposure produced by welding equipments. In: Studies in applied electromagnetics and mechanics, vol 33. Ios Pr Inc, pp 911–919 Dughiero F, Forzan M, Sieni E (2010) Simple 3D FEM models for evaluation of EM exposure produced by welding equipments. In: Studies in applied electromagnetics and mechanics, vol 33. Ios Pr Inc, pp 911–919
18.
Zurück zum Zitat Edd JF, Davalos RV (2007) Mathematical modeling of irreversible electroporation for treatment planning. Technol Cancer Res Treat 6:275–286CrossRefPubMed Edd JF, Davalos RV (2007) Mathematical modeling of irreversible electroporation for treatment planning. Technol Cancer Res Treat 6:275–286CrossRefPubMed
20.
Zurück zum Zitat Forzan M, Sieni E, Dughiero F (2010) A numerical evaluation of electromagnetic fields exposure on real human body models until 100 kHz. COMPEL Int J Comput Maths Electr Electron Eng 29:1552–1561CrossRef Forzan M, Sieni E, Dughiero F (2010) A numerical evaluation of electromagnetic fields exposure on real human body models until 100 kHz. COMPEL Int J Comput Maths Electr Electron Eng 29:1552–1561CrossRef
21.
Zurück zum Zitat Gabriel S, Laul RW, Gabriel C (1996) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269CrossRefPubMed Gabriel S, Laul RW, Gabriel C (1996) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269CrossRefPubMed
22.
Zurück zum Zitat Gabriel S, Laul RW, Gabriel C (1996) The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 41:2271–2293CrossRefPubMed Gabriel S, Laul RW, Gabriel C (1996) The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 41:2271–2293CrossRefPubMed
24.
Zurück zum Zitat Garcia PA, Rossmeisl JH, Robertson J et al (2009) Pilot study of irreversible electroporation for intracranial surgery. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2009:6513–6516. doi:10.1109/IEMBS.2009.5333141 Garcia PA, Rossmeisl JH, Robertson J et al (2009) Pilot study of irreversible electroporation for intracranial surgery. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2009:6513–6516. doi:10.​1109/​IEMBS.​2009.​5333141
26.
Zurück zum Zitat García-Sánchez T, Sanchez B, Gomez-Foix A, Bragós R (2015) Electrical impedance measurements on electropermeabilized cells attached to microelectrodes. In: Lacković I, Vasic D (eds) 6th European conference of the international federation for medical and biological engineering. Springer International Publishing, Berlin, pp 553–556 García-Sánchez T, Sanchez B, Gomez-Foix A, Bragós R (2015) Electrical impedance measurements on electropermeabilized cells attached to microelectrodes. In: Lacković I, Vasic D (eds) 6th European conference of the international federation for medical and biological engineering. Springer International Publishing, Berlin, pp 553–556
27.
Zurück zum Zitat Gjonaj E, Bartsch M, Clemens M et al (2002) High-resolution human anatomy models for advanced electromagnetic field computations. IEEE Trans Magn 38:357–360CrossRef Gjonaj E, Bartsch M, Clemens M et al (2002) High-resolution human anatomy models for advanced electromagnetic field computations. IEEE Trans Magn 38:357–360CrossRef
32.
Zurück zum Zitat Ivorra Antoni, Al-Sakere Bassim, Rubinsky Boris, Mir Lluis M (2009) In vivo electrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment outcome. Phys Med Biol 54:5949CrossRefPubMed Ivorra Antoni, Al-Sakere Bassim, Rubinsky Boris, Mir Lluis M (2009) In vivo electrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment outcome. Phys Med Biol 54:5949CrossRefPubMed
33.
34.
Zurück zum Zitat Ivorra A, Mir LM, Rubinsky B (2010) Electric field redistribution due to conductivity changes during tissue electroporation: experiments with a simple vegetal model. In: Dössel O, Schlegel W (eds) World congress on medical physics and biomedical engineering. Ivorra A, Mir LM, Rubinsky B (2010) Electric field redistribution due to conductivity changes during tissue electroporation: experiments with a simple vegetal model. In: Dössel O, Schlegel W (eds) World congress on medical physics and biomedical engineering.
35.
Zurück zum Zitat Jaroszeski MJ, Heller R, Gilbert R (2000) Electrochemotherapy, electrogenetherapy, and transdermal drug delivery: electrically mediated delivery of molecules to cells. Humana Press, TotowaCrossRef Jaroszeski MJ, Heller R, Gilbert R (2000) Electrochemotherapy, electrogenetherapy, and transdermal drug delivery: electrically mediated delivery of molecules to cells. Humana Press, TotowaCrossRef
39.
Zurück zum Zitat Laufer Shlomi, Ivorra Antoni, Reuter Victor E, Rubinsky Boris, Solomon Stephen B (2010) Electrical impedance characterization of normal and cancerous human hepatic tissue. Physiol Meas 31:995CrossRefPubMed Laufer Shlomi, Ivorra Antoni, Reuter Victor E, Rubinsky Boris, Solomon Stephen B (2010) Electrical impedance characterization of normal and cancerous human hepatic tissue. Physiol Meas 31:995CrossRefPubMed
40.
Zurück zum Zitat Laufer Shlomi, Solomon Stephen B, Rubinsky Boris (2012) Tissue characterization using electrical impedance spectroscopy data: a linear algebra approach. Physiol Meas 33:997CrossRefPubMed Laufer Shlomi, Solomon Stephen B, Rubinsky Boris (2012) Tissue characterization using electrical impedance spectroscopy data: a linear algebra approach. Physiol Meas 33:997CrossRefPubMed
42.
Zurück zum Zitat Marty M, Sersa G, Garbay JR et al (2006) Electrochemotherapy—an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. Eur J Cancer Suppl 4:3–13. doi:10.1016/j.ejcsup.2006.08.002 CrossRef Marty M, Sersa G, Garbay JR et al (2006) Electrochemotherapy—an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. Eur J Cancer Suppl 4:3–13. doi:10.​1016/​j.​ejcsup.​2006.​08.​002 CrossRef
43.
Zurück zum Zitat Miklavcic D, Corovic S, Pucihar G, Pavselj N (2006) Importance of tumour coverage by sufficiently high local electric field for effective electrochemotherapy. EJC Suppl 4:45–51CrossRef Miklavcic D, Corovic S, Pucihar G, Pavselj N (2006) Importance of tumour coverage by sufficiently high local electric field for effective electrochemotherapy. EJC Suppl 4:45–51CrossRef
46.
Zurück zum Zitat Miklavčič D, Pavšelj N, Hart FX (2006) Electric properties of tissues. Wiley Encycl. Biomed. Eng., New York Miklavčič D, Pavšelj N, Hart FX (2006) Electric properties of tissues. Wiley Encycl. Biomed. Eng., New York
50.
Zurück zum Zitat Mir LM, Gehl J, Sersa G et al (2006) Standard operating procedures of the electrochemotherapy: instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the Cliniporator™ by means of invasive or non-invasive electrodes. EJC Suppl 4:14–25CrossRef Mir LM, Gehl J, Sersa G et al (2006) Standard operating procedures of the electrochemotherapy: instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the Cliniporator™ by means of invasive or non-invasive electrodes. EJC Suppl 4:14–25CrossRef
52.
Zurück zum Zitat Neal RE, Garcia PA, Robertson JL, Davalos RV (2012) Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning. IEEE Trans Biomed Eng 59:1076–1085. doi:10.1109/TBME.2012.2182994 CrossRefPubMed Neal RE, Garcia PA, Robertson JL, Davalos RV (2012) Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning. IEEE Trans Biomed Eng 59:1076–1085. doi:10.​1109/​TBME.​2012.​2182994 CrossRefPubMed
53.
Zurück zum Zitat Neal RE, Millar JL, Kavnoudias H et al (2014) In vivo characterization and numerical simulation of prostate properties for non-thermal irreversible electroporation ablation: characterized and simulated prostate IRE. The Prostate 74:458–468. doi:10.1002/pros.22760 CrossRefPubMed Neal RE, Millar JL, Kavnoudias H et al (2014) In vivo characterization and numerical simulation of prostate properties for non-thermal irreversible electroporation ablation: characterized and simulated prostate IRE. The Prostate 74:458–468. doi:10.​1002/​pros.​22760 CrossRefPubMed
55.
Zurück zum Zitat Pakhomov A (2010) Advanced electroporation techniques in biology and medicine. CRC Press, Boca Raton Pakhomov A (2010) Advanced electroporation techniques in biology and medicine. CRC Press, Boca Raton
58.
Zurück zum Zitat Pavselj N, Miklavcic D (2008) Numerical models of skin electropermeabilization taking into account conductivity changes and the presence of local transport regions. IEEE Trans Plasma Sci 36:1650–1658CrossRef Pavselj N, Miklavcic D (2008) Numerical models of skin electropermeabilization taking into account conductivity changes and the presence of local transport regions. IEEE Trans Plasma Sci 36:1650–1658CrossRef
61.
Zurück zum Zitat Pliquett U (2015) Electrical characterization in time domain—sample rate and ADC precision. In: Lacković I, Vasic D (eds) 6th European conference of the international federation for medical and biological engineering. Springer International Publishing, Berlin, pp 854–857 Pliquett U (2015) Electrical characterization in time domain—sample rate and ADC precision. In: Lacković I, Vasic D (eds) 6th European conference of the international federation for medical and biological engineering. Springer International Publishing, Berlin, pp 854–857
62.
63.
Zurück zum Zitat Pucihar G, Mir LM, Miklavcic D (2002) The effect of pulse repetition frequency on the uptake into electropermeabilized cells in vitro with possible applications in electrochemotherapy. Bioelectrochemistry Amst Neth 57:167–172CrossRef Pucihar G, Mir LM, Miklavcic D (2002) The effect of pulse repetition frequency on the uptake into electropermeabilized cells in vitro with possible applications in electrochemotherapy. Bioelectrochemistry Amst Neth 57:167–172CrossRef
65.
Zurück zum Zitat Rubinsky B (2010) Irreversible electroporation. Springer, Berlin, HeidelbergCrossRef Rubinsky B (2010) Irreversible electroporation. Springer, Berlin, HeidelbergCrossRef
66.
Zurück zum Zitat Santini MT, Rainaldi G, Romano R et al (2004) MG-63 human osteosarcoma cells grown in monolayer and as three-dimensional tumor spheroids present a different metabolic profile: a 1H NMR study. FEBS Lett 557:148–154. doi:10.1016/S0014-5793(03)01466-2 CrossRefPubMed Santini MT, Rainaldi G, Romano R et al (2004) MG-63 human osteosarcoma cells grown in monolayer and as three-dimensional tumor spheroids present a different metabolic profile: a 1H NMR study. FEBS Lett 557:148–154. doi:10.​1016/​S0014-5793(03)01466-2 CrossRefPubMed
68.
Zurück zum Zitat Sel D, Lebar AM, Miklavcic D (2007) Feasibility of employing model-based optimization of pulse amplitude and electrode distance for effective tumor electropermeabilization. IEEE Trans Biomed Eng 54:773–781CrossRefPubMed Sel D, Lebar AM, Miklavcic D (2007) Feasibility of employing model-based optimization of pulse amplitude and electrode distance for effective tumor electropermeabilization. IEEE Trans Biomed Eng 54:773–781CrossRefPubMed
70.
Zurück zum Zitat Stuchly MA, Dawson T (2000) Interaction of low-frequency electric and magnetic fields with the human body. Proc IEEE 88:643–664CrossRef Stuchly MA, Dawson T (2000) Interaction of low-frequency electric and magnetic fields with the human body. Proc IEEE 88:643–664CrossRef
71.
Zurück zum Zitat World Health Organization, International Agency for Research on Cancer (2013) WHO classification of tumours of soft tissue and bone, 4th edn. IARC Press, Lyon World Health Organization, International Agency for Research on Cancer (2013) WHO classification of tumours of soft tissue and bone, 4th edn. IARC Press, Lyon
Metadaten
Titel
Electrical resistance of human soft tissue sarcomas: an ex vivo study on surgical specimens
verfasst von
L. G. Campana
M. Cesari
F. Dughiero
M. Forzan
M. Rastrelli
C. R. Rossi
E. Sieni
A. L. Tosi
Publikationsdatum
01.05.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 5/2016
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-015-1368-6

Weitere Artikel der Ausgabe 5/2016

Medical & Biological Engineering & Computing 5/2016 Zur Ausgabe