Skip to main content
Erschienen in: Cognitive Neurodynamics 1/2010

01.03.2010 | Review

Mapping of contextual modulation in the population response of primary visual cortex

verfasst von: David M. Alexander, Cees Van Leeuwen

Erschienen in: Cognitive Neurodynamics | Ausgabe 1/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We review the evidence of long-range contextual modulation in V1. Populations of neurons in V1 are activated by a wide variety of stimuli outside of their classical receptive fields (RF), well beyond their surround region. These effects generally involve extra-RF features with an orientation component. The population mapping of orientation preferences to the upper layers of V1 is well understood, as far as the classical RF properties are concerned, and involves organization into pinwheel-like structures. We introduce a novel hypothesis regarding the organization of V1’s contextual response. We show that RF and extra-RF orientation preferences are mapped in related ways. Orientation pinwheels are the foci of both types of features. The mapping of contextual features onto the orientation pinwheel has a form that recapitulates the organization of the visual field: an iso-orientation patch within the pinwheel also responds to extra-RF stimuli of the same orientation. We hypothesize that the same form of mapping applies to other stimulus properties that are mapped out in V1, such as colour and contrast selectivity. A specific consequence is that fovea-like properties will be mapped in a systematic way to orientation pinwheels. We review the evidence that cytochrome oxidase blobs comprise the foci of this contextual remapping for colour and low contrasts. Neurodynamics and motion in the visual field are argued to play an important role in the shaping and maintenance of this type of mapping in V1.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
To be exact, a hypercolumn encompasses the input from both eyes, such that what is described here is effectively half of a hypercolumn.
 
2
The position p G can be determined empirically as the centre of the aggregate RF of all z G in the local map. Aggregate RF is defined as the union of individual receptive fields of the population of neurons.
 
3
Similar arguments have been used to explain the uptake of metabolic and anatomical tracer in layer 4C. The cortical magnification factor can be thought of as rescaling cone densities to an essentially flat distribution of colour selectivity in the input layer of V1 (Tootell et al. 1988b). The cortical magnification factor increases more steeply toward the fovea than does the density of ganglion cells in the monkey retina (Silveira et al. 1993; Azzopardi and Cowey 1996); this may be why intra-ocular [3H]-proline uptake in the granular layers labels the foveal region of V1 more faintly than the periphery (Adams and Horton 2003).
 
4
We should recall that our review is not directly concerned with patterns of response properties of individual neurons but with the spatial organization of the population response. It is logically possible, for example, that within a CO blob, neurons of a particular orientation preference are interspersed with colour selective neurons in a 'salt and pepper' fashion. It may also be worth emphasizing that the mapping of spatial gradients in the retina to spatial gradients in local maps of context does not determine the exact tuning characteristics of individual neurons in V1. Contextual responses in V1 differ markedly from response characteristics in the retina, yet both can still display a related spatial organization.
 
Literatur
Zurück zum Zitat Adams DL, Horton JC (2003) A precise retinotopic map of primate striate cortex generated from the representation of angioscotomas. J Neurosci 23(9):3771–3789PubMed Adams DL, Horton JC (2003) A precise retinotopic map of primate striate cortex generated from the representation of angioscotomas. J Neurosci 23(9):3771–3789PubMed
Zurück zum Zitat Alexander DM, Wright JJ (2006) The maximum range and timing of excitatory contextual modulation in monkey primary visual cortex. Vis Neurosci 23(5):721–728PubMedCrossRef Alexander DM, Wright JJ (2006) The maximum range and timing of excitatory contextual modulation in monkey primary visual cortex. Vis Neurosci 23(5):721–728PubMedCrossRef
Zurück zum Zitat Alexander DM, Bourke PD, Sheridan P, Konstandatos O, Wright JJ (2004) Intrinsic connections in tree shrew V1 imply a global to local mapping. Vision Res 44(9):857–876PubMedCrossRef Alexander DM, Bourke PD, Sheridan P, Konstandatos O, Wright JJ (2004) Intrinsic connections in tree shrew V1 imply a global to local mapping. Vision Res 44(9):857–876PubMedCrossRef
Zurück zum Zitat Allman JM, Miezin FM, McGuinness E (1985) Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. Annu Rev Neurosci 8:407–430PubMedCrossRef Allman JM, Miezin FM, McGuinness E (1985) Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. Annu Rev Neurosci 8:407–430PubMedCrossRef
Zurück zum Zitat Angelucci A, Levitt JB, Walton EJS, Hupe JM, Bullier J, Lund JS (2002) Circuits for local and global signal integration in primary visual cortex. J Neurosci 22(19):8633–8646PubMed Angelucci A, Levitt JB, Walton EJS, Hupe JM, Bullier J, Lund JS (2002) Circuits for local and global signal integration in primary visual cortex. J Neurosci 22(19):8633–8646PubMed
Zurück zum Zitat Azzopardi P, Cowey A (1996) Models of ganglion cell topography in the retina of macaque monkeys and their application to sensory cortical scaling. Neuroscience 72(3):617–625PubMedCrossRef Azzopardi P, Cowey A (1996) Models of ganglion cell topography in the retina of macaque monkeys and their application to sensory cortical scaling. Neuroscience 72(3):617–625PubMedCrossRef
Zurück zum Zitat Bair W, Movshon JA (2004) Adaptive temporal integration of motion in direction-selective neurons in macaque visual cortex. J Neurosci 24(33):7305–7323PubMedCrossRef Bair W, Movshon JA (2004) Adaptive temporal integration of motion in direction-selective neurons in macaque visual cortex. J Neurosci 24(33):7305–7323PubMedCrossRef
Zurück zum Zitat Bartfeld E, Grinvald A (1992) Relationships between orientation-preference pinwheels, cytochrome-oxidase blobs, and ocular-dominance columns in primate striate cortex. Proc Natl Acad Sci USA 89(24):11905–11909PubMedCrossRef Bartfeld E, Grinvald A (1992) Relationships between orientation-preference pinwheels, cytochrome-oxidase blobs, and ocular-dominance columns in primate striate cortex. Proc Natl Acad Sci USA 89(24):11905–11909PubMedCrossRef
Zurück zum Zitat Basole A, White LE, Fitzpatrick D (2003) Mapping multiple features in the population response of visual cortex. Nature 423(6943):986–990PubMedCrossRef Basole A, White LE, Fitzpatrick D (2003) Mapping multiple features in the population response of visual cortex. Nature 423(6943):986–990PubMedCrossRef
Zurück zum Zitat Basole A, Kreft-Kerekes V, White LE, Fitzpatrick D (2006) Cortical cartography revisited: a frequency perspective on the functional architecture of visual cortex. Visual perception, Part 1. Fundamentals of vision: low and mid-level processes in perception. Prog Brain Res 154:121–134PubMedCrossRef Basole A, Kreft-Kerekes V, White LE, Fitzpatrick D (2006) Cortical cartography revisited: a frequency perspective on the functional architecture of visual cortex. Visual perception, Part 1. Fundamentals of vision: low and mid-level processes in perception. Prog Brain Res 154:121–134PubMedCrossRef
Zurück zum Zitat Benucci A, Frazor RA, Carandini M (2007) Standing waves and travelling waves distinguish two circuits in visual cortex. Neuron 55(1):103–117PubMedCrossRef Benucci A, Frazor RA, Carandini M (2007) Standing waves and travelling waves distinguish two circuits in visual cortex. Neuron 55(1):103–117PubMedCrossRef
Zurück zum Zitat Berry MJ, Brivanlou IH, Jordan TA, Meister M (1999) Anticipation of moving stimuli by the retina. Nature 398(6725):334–338PubMedCrossRef Berry MJ, Brivanlou IH, Jordan TA, Meister M (1999) Anticipation of moving stimuli by the retina. Nature 398(6725):334–338PubMedCrossRef
Zurück zum Zitat Blakemore C, Tobin EA (1972) Lateral inhibition between orientation detectors in cats visual-cortex. Exp Brain Res 15(4):439–441PubMedCrossRef Blakemore C, Tobin EA (1972) Lateral inhibition between orientation detectors in cats visual-cortex. Exp Brain Res 15(4):439–441PubMedCrossRef
Zurück zum Zitat Blasdel GG (1992) Orientation selectivity, preference, and continuity in monkey striate cortex. J Neurosci 12(8):3139–3161PubMed Blasdel GG (1992) Orientation selectivity, preference, and continuity in monkey striate cortex. J Neurosci 12(8):3139–3161PubMed
Zurück zum Zitat Bonhoeffer T, Grinvald A (1991) Iso-orientation domains in cat visual-cortex are arranged in pinwheel-like patterns. Nature 353(6343):429–431PubMedCrossRef Bonhoeffer T, Grinvald A (1991) Iso-orientation domains in cat visual-cortex are arranged in pinwheel-like patterns. Nature 353(6343):429–431PubMedCrossRef
Zurück zum Zitat Bosking WH, Fitzpatrick D (1995) Physiological correlates of anisotropy in horizontal connections: length summation properties of neurons in layers 2 and 3 of tree shrew striate cortex. Soc Neurosci Abstr 21:1751 Bosking WH, Fitzpatrick D (1995) Physiological correlates of anisotropy in horizontal connections: length summation properties of neurons in layers 2 and 3 of tree shrew striate cortex. Soc Neurosci Abstr 21:1751
Zurück zum Zitat Bosking WH, Zhang Y, Schofield B, Fitzpatrick D (1997) Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J Neurosci 17(6):2112–2127PubMed Bosking WH, Zhang Y, Schofield B, Fitzpatrick D (1997) Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J Neurosci 17(6):2112–2127PubMed
Zurück zum Zitat Briggs F, Usrey WM (2007) A fast, reciprocal pathway between the lateral geniculate nucleus and visual cortex in the macaque monkey. J Neurosci 27(20):5431–5436PubMedCrossRef Briggs F, Usrey WM (2007) A fast, reciprocal pathway between the lateral geniculate nucleus and visual cortex in the macaque monkey. J Neurosci 27(20):5431–5436PubMedCrossRef
Zurück zum Zitat Brunswik E (1956) Perception and the representative design of psychological experiments. University of California Press, Berkeley Brunswik E (1956) Perception and the representative design of psychological experiments. University of California Press, Berkeley
Zurück zum Zitat Cao A, Schiller PH (2003) Neural responses to relative speed in the primary visual cortex of rhesus monkey. Vis Neurosci 20(1):77–84PubMedCrossRef Cao A, Schiller PH (2003) Neural responses to relative speed in the primary visual cortex of rhesus monkey. Vis Neurosci 20(1):77–84PubMedCrossRef
Zurück zum Zitat Carreira-Perpinan MA, Lister RJ, Goodhill GJ (2005) A computational model for the development of multiple maps in primary visual cortex. Cereb Cortex 15(8):1222–1233PubMedCrossRef Carreira-Perpinan MA, Lister RJ, Goodhill GJ (2005) A computational model for the development of multiple maps in primary visual cortex. Cereb Cortex 15(8):1222–1233PubMedCrossRef
Zurück zum Zitat Cavanaugh JR, Bair W, Movshon JA (2002) Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. J Neurophysiol 88(5):2547–2556PubMedCrossRef Cavanaugh JR, Bair W, Movshon JA (2002) Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. J Neurophysiol 88(5):2547–2556PubMedCrossRef
Zurück zum Zitat Chisum HJ, Mooser F, Fitzpatrick D (2003) Emergent properties of layer 2/3 neurons reflect the collinear arrangement of horizontal connections in tree shrew visual cortex. J Neurosci 23(7):2947–2960PubMed Chisum HJ, Mooser F, Fitzpatrick D (2003) Emergent properties of layer 2/3 neurons reflect the collinear arrangement of horizontal connections in tree shrew visual cortex. J Neurosci 23(7):2947–2960PubMed
Zurück zum Zitat Crair MC, Ruthazer ES, Gillespie DC, Stryker MP (1997) Ocular dominance peaks at pinwheel center singularities of the orientation map in cat visual cortex. J Neurophysiol 77(6):3381–3385PubMed Crair MC, Ruthazer ES, Gillespie DC, Stryker MP (1997) Ocular dominance peaks at pinwheel center singularities of the orientation map in cat visual cortex. J Neurophysiol 77(6):3381–3385PubMed
Zurück zum Zitat Das A, Gilbert CD (1997) Distortions of visuotopic map match orientation singularities in primary visual cortex. Nature 387(6633):594–598PubMedCrossRef Das A, Gilbert CD (1997) Distortions of visuotopic map match orientation singularities in primary visual cortex. Nature 387(6633):594–598PubMedCrossRef
Zurück zum Zitat De Valois KK, De Valois RL, Yund EW (1979) Responses of striate cortex cells to grating and checkerboard patterns. J Physiol Lond 291:483–505PubMed De Valois KK, De Valois RL, Yund EW (1979) Responses of striate cortex cells to grating and checkerboard patterns. J Physiol Lond 291:483–505PubMed
Zurück zum Zitat Ding Y, Casagrande VA (1997) The distribution and morphology of LGN K pathway axons within the layers and CO blobs of owl monkey V1. Vis Neurosci 14(4):691–704PubMedCrossRef Ding Y, Casagrande VA (1997) The distribution and morphology of LGN K pathway axons within the layers and CO blobs of owl monkey V1. Vis Neurosci 14(4):691–704PubMedCrossRef
Zurück zum Zitat Eckhorn R, Bruns A, Saam M, Gail A, Gabriel A, Brinksmeyer HJ (2001) Flexible cortical gamma-band correlations suggest neural principles of visual processing. Vis Cogn 8(3/4/5):519–530 Eckhorn R, Bruns A, Saam M, Gail A, Gabriel A, Brinksmeyer HJ (2001) Flexible cortical gamma-band correlations suggest neural principles of visual processing. Vis Cogn 8(3/4/5):519–530
Zurück zum Zitat Edwards DP, Purpura KP, Kaplan E (1995) Contrast sensitivity and spatial-frequency response of primate cortical-neurons in and around the cytochrome-oxidase blobs. Vision Res 35(11):1501–1523PubMedCrossRef Edwards DP, Purpura KP, Kaplan E (1995) Contrast sensitivity and spatial-frequency response of primate cortical-neurons in and around the cytochrome-oxidase blobs. Vision Res 35(11):1501–1523PubMedCrossRef
Zurück zum Zitat Fiorani M, Rosa MG, Gattass R, Rocha-Miranda CE (1992) Dynamic surrounds of receptive fields in primate striate cortex: a physiological basis for perceptual completion? Proc Natl Acad Sci USA 89(18):8547–8551CrossRef Fiorani M, Rosa MG, Gattass R, Rocha-Miranda CE (1992) Dynamic surrounds of receptive fields in primate striate cortex: a physiological basis for perceptual completion? Proc Natl Acad Sci USA 89(18):8547–8551CrossRef
Zurück zum Zitat Fitzpatrick D (1996) The functional organization of local circuits in visual cortex: insights from the study of tree shrew striate cortex. Cereb Cortex 6(3):329–341PubMedCrossRef Fitzpatrick D (1996) The functional organization of local circuits in visual cortex: insights from the study of tree shrew striate cortex. Cereb Cortex 6(3):329–341PubMedCrossRef
Zurück zum Zitat Freeman WJ, Barrie JM (2000) Analysis of spatial patterns of phase in neocortical gamma EEGs in rabbit. J Neurophysiol 84(3):1266–1278PubMed Freeman WJ, Barrie JM (2000) Analysis of spatial patterns of phase in neocortical gamma EEGs in rabbit. J Neurophysiol 84(3):1266–1278PubMed
Zurück zum Zitat Fukuda M, Moon CH, Wang P, Kim SG (2006) Mapping iso-orientation columns by contrast agent-enhanced functional magnetic resonance imaging: reproducibility, specificity, and evaluation by optical imaging of intrinsic signal. J Neurosci 26(46):11821–11832PubMedCrossRef Fukuda M, Moon CH, Wang P, Kim SG (2006) Mapping iso-orientation columns by contrast agent-enhanced functional magnetic resonance imaging: reproducibility, specificity, and evaluation by optical imaging of intrinsic signal. J Neurosci 26(46):11821–11832PubMedCrossRef
Zurück zum Zitat Goodchild AK, Chan TL, Grunert U (1996) Horizontal cell connections with short-wavelength-sensitive cones in macaque monkey retina. Vis Neurosci 13(5):833–845PubMedCrossRef Goodchild AK, Chan TL, Grunert U (1996) Horizontal cell connections with short-wavelength-sensitive cones in macaque monkey retina. Vis Neurosci 13(5):833–845PubMedCrossRef
Zurück zum Zitat Guo K, Robertson RG, Pulgarin M, Nevado A, Panzeri S, Thiele A, Young MP (2007) Spatio-temporal prediction and inference by V1 neurons. Eur J Neurosci 26(4):1045–1054PubMedCrossRef Guo K, Robertson RG, Pulgarin M, Nevado A, Panzeri S, Thiele A, Young MP (2007) Spatio-temporal prediction and inference by V1 neurons. Eur J Neurosci 26(4):1045–1054PubMedCrossRef
Zurück zum Zitat Harrison SA, Tong F (2009) Decoding reveals the contents of visual working memory in early visual areas. Nature 458(7238):632–635PubMedCrossRef Harrison SA, Tong F (2009) Decoding reveals the contents of visual working memory in early visual areas. Nature 458(7238):632–635PubMedCrossRef
Zurück zum Zitat Horton JC, Hocking DR (1996) An adult-like pattern of ocular dominance columns in striate cortex of newborn monkeys prior to visual experience. J Neurosci 16(5):1791–1807PubMed Horton JC, Hocking DR (1996) An adult-like pattern of ocular dominance columns in striate cortex of newborn monkeys prior to visual experience. J Neurosci 16(5):1791–1807PubMed
Zurück zum Zitat Horton JC, Hocking DR (1998) Monocular core zones and binocular border strips in primate striate cortex revealed by the contrasting effects of enucleation, eyelid suture, and retinal laser lesions on cytochrome oxidase activity. J Neurosci 18(14):5433–5455PubMed Horton JC, Hocking DR (1998) Monocular core zones and binocular border strips in primate striate cortex revealed by the contrasting effects of enucleation, eyelid suture, and retinal laser lesions on cytochrome oxidase activity. J Neurosci 18(14):5433–5455PubMed
Zurück zum Zitat Horton JC, Hubel DH (1981) Regular patchy distribution of cytochrome-oxidase staining in primary visual-cortex of macaque monkey. Nature 292(5825):762–764PubMedCrossRef Horton JC, Hubel DH (1981) Regular patchy distribution of cytochrome-oxidase staining in primary visual-cortex of macaque monkey. Nature 292(5825):762–764PubMedCrossRef
Zurück zum Zitat Huang X, Paradiso MA (2005) Background changes delay information represented in macaque V1 neurons. J Neurophysiol 94(6):4314–4330PubMedCrossRef Huang X, Paradiso MA (2005) Background changes delay information represented in macaque V1 neurons. J Neurophysiol 94(6):4314–4330PubMedCrossRef
Zurück zum Zitat Hubel DH, Wiesel TN (1974) Sequence regularity and geometry of orientation columns in monkey striate cortex. J Comp Neurol 158(3):267–294PubMedCrossRef Hubel DH, Wiesel TN (1974) Sequence regularity and geometry of orientation columns in monkey striate cortex. J Comp Neurol 158(3):267–294PubMedCrossRef
Zurück zum Zitat Hubel DH, Wiesel TN (1977) Functional architecture of macaque monkey visual-cortex. Proc R Soc Lond B Biol Sci 198(1130):1–59PubMedCrossRef Hubel DH, Wiesel TN (1977) Functional architecture of macaque monkey visual-cortex. Proc R Soc Lond B Biol Sci 198(1130):1–59PubMedCrossRef
Zurück zum Zitat Hubener M, Shoham D, Grinvald A, Bonhoeffer T (1997) Spatial relationships among three columnar systems in cat area 17. J Neurosci 17(23):9270–9284PubMed Hubener M, Shoham D, Grinvald A, Bonhoeffer T (1997) Spatial relationships among three columnar systems in cat area 17. J Neurosci 17(23):9270–9284PubMed
Zurück zum Zitat Humphrey AL, Hendrickson AE (1983) Background and stimulus-induced patterns of high metabolic-activity in the visual-cortex (area-17) of the squirrel and macaque monkey. J Neurosci 3(2):345–358PubMed Humphrey AL, Hendrickson AE (1983) Background and stimulus-induced patterns of high metabolic-activity in the visual-cortex (area-17) of the squirrel and macaque monkey. J Neurosci 3(2):345–358PubMed
Zurück zum Zitat Juergens E, Guettler A, Eckhorn R (1999) Visual stimulation elicits locked and induced gamma oscillations in monkey intracortical- and EEG-potentials, but not in human EEG. Exp Brain Res 129(2):247–259PubMedCrossRef Juergens E, Guettler A, Eckhorn R (1999) Visual stimulation elicits locked and induced gamma oscillations in monkey intracortical- and EEG-potentials, but not in human EEG. Exp Brain Res 129(2):247–259PubMedCrossRef
Zurück zum Zitat Kapadia MK, Westheimer G, Gilbert CD (1999) Dynamics of spatial summation in primary visual cortex of alert monkeys. Proc Natl Acad Sci USA 96(21):12073–12078PubMedCrossRef Kapadia MK, Westheimer G, Gilbert CD (1999) Dynamics of spatial summation in primary visual cortex of alert monkeys. Proc Natl Acad Sci USA 96(21):12073–12078PubMedCrossRef
Zurück zum Zitat Khayat PS, Spekreijse H, Roelfsema PR (2004a) Correlates of transsaccadic integration in the primary visual cortex of the monkey. Proc Natl Acad Sci USA 101(34):12712–12717PubMedCrossRef Khayat PS, Spekreijse H, Roelfsema PR (2004a) Correlates of transsaccadic integration in the primary visual cortex of the monkey. Proc Natl Acad Sci USA 101(34):12712–12717PubMedCrossRef
Zurück zum Zitat Khayat PS, Spekreijse H, Roelfsema PR (2004b) Visual information transfer across eye movements in the monkey. Vision Res 44(25):2901–2917PubMedCrossRef Khayat PS, Spekreijse H, Roelfsema PR (2004b) Visual information transfer across eye movements in the monkey. Vision Res 44(25):2901–2917PubMedCrossRef
Zurück zum Zitat Kimura R, Ohzawa I (2009) Time course of cross-orientation suppression in the early visual cortex. J Neurophysiol 101(3):1463–1479PubMedCrossRef Kimura R, Ohzawa I (2009) Time course of cross-orientation suppression in the early visual cortex. J Neurophysiol 101(3):1463–1479PubMedCrossRef
Zurück zum Zitat Kinoshita M, Komatsu H (2001) Neural representation of the luminance and brightness of a uniform surface in the macaque primary visual cortex. J Neurophysiol 86(5):2559–2570PubMed Kinoshita M, Komatsu H (2001) Neural representation of the luminance and brightness of a uniform surface in the macaque primary visual cortex. J Neurophysiol 86(5):2559–2570PubMed
Zurück zum Zitat Kiorpes L, Kiper DC (1996) Development of contrast sensitivity across the visual field in macaque monkeys (Macaca nemestrina). Vision Res 36(2):239–247PubMedCrossRef Kiorpes L, Kiper DC (1996) Development of contrast sensitivity across the visual field in macaque monkeys (Macaca nemestrina). Vision Res 36(2):239–247PubMedCrossRef
Zurück zum Zitat Kruger J, Fischer B, Barth R (1975) Shift-effect in retinal ganglion-cells of rhesus-monkey. Exp Brain Res 23(4):443–446PubMedCrossRef Kruger J, Fischer B, Barth R (1975) Shift-effect in retinal ganglion-cells of rhesus-monkey. Exp Brain Res 23(4):443–446PubMedCrossRef
Zurück zum Zitat Lachica EA, Casagrande VA (1992) Direct W-like geniculate projections to the cytochrome oxidase (CO) blobs in primate visual cortex: axon morphology. J Comp Neurol 319(1):141–158PubMedCrossRef Lachica EA, Casagrande VA (1992) Direct W-like geniculate projections to the cytochrome oxidase (CO) blobs in primate visual cortex: axon morphology. J Comp Neurol 319(1):141–158PubMedCrossRef
Zurück zum Zitat Lachica EA, Beck PD, Casagrande VA (1992) Parallel pathways in macaque monkey striate cortex: anatomically defined columns in layer III. Proc Natl Acad Sci USA 89(8):3566–3570PubMedCrossRef Lachica EA, Beck PD, Casagrande VA (1992) Parallel pathways in macaque monkey striate cortex: anatomically defined columns in layer III. Proc Natl Acad Sci USA 89(8):3566–3570PubMedCrossRef
Zurück zum Zitat Lamme VAF, Super H, Spekreijse H (1998a) Feedforward, horizontal, and feedback processing in the visual cortex. Curr Opin Neurobiol 8(4):529–535PubMedCrossRef Lamme VAF, Super H, Spekreijse H (1998a) Feedforward, horizontal, and feedback processing in the visual cortex. Curr Opin Neurobiol 8(4):529–535PubMedCrossRef
Zurück zum Zitat Lamme VAF, Zipser K, Spekreijse H (1998b) Figure-ground activity in primary visual cortex is suppressed by anesthesia. Proc Natl Acad Sci USA 95(6):3263–3268PubMedCrossRef Lamme VAF, Zipser K, Spekreijse H (1998b) Figure-ground activity in primary visual cortex is suppressed by anesthesia. Proc Natl Acad Sci USA 95(6):3263–3268PubMedCrossRef
Zurück zum Zitat Landisman CE, Ts’o DY (2002a) Color processing in macaque striate cortex: electrophysiological properties. J Neurophysiol 87(6):3138–3151PubMed Landisman CE, Ts’o DY (2002a) Color processing in macaque striate cortex: electrophysiological properties. J Neurophysiol 87(6):3138–3151PubMed
Zurück zum Zitat Landisman CE, Ts’o DY (2002b) Color processing in macaque striate cortex: relationships to ocular dominance, cytochrome oxidase, and orientation. J Neurophysiol 87(6):3126–3137PubMed Landisman CE, Ts’o DY (2002b) Color processing in macaque striate cortex: relationships to ocular dominance, cytochrome oxidase, and orientation. J Neurophysiol 87(6):3126–3137PubMed
Zurück zum Zitat Lee TS, Mumford D, Romero R, Lamme VAF (1998) The role of the primary visual cortex in higher level vision. Vision Res 38(15–16):2429–2454PubMedCrossRef Lee TS, Mumford D, Romero R, Lamme VAF (1998) The role of the primary visual cortex in higher level vision. Vision Res 38(15–16):2429–2454PubMedCrossRef
Zurück zum Zitat Lennie P, Krauskopf J, Sclar G (1990) Chromatic mechanisms in striate cortex of macaque. J Neurosci 10(2):649–669PubMed Lennie P, Krauskopf J, Sclar G (1990) Chromatic mechanisms in striate cortex of macaque. J Neurosci 10(2):649–669PubMed
Zurück zum Zitat Levay S, Hubel DH, Wiesel TN (1975) Pattern of ocular dominance columns in macaque visual-cortex revealed by a reduced silver stain. J Comp Neurol 159(4):559–575PubMedCrossRef Levay S, Hubel DH, Wiesel TN (1975) Pattern of ocular dominance columns in macaque visual-cortex revealed by a reduced silver stain. J Comp Neurol 159(4):559–575PubMedCrossRef
Zurück zum Zitat Leventhal AG, Thompson KG, Liu D, Zhou YF, Ault SJ (1995) Concomitant sensitivity to orientation, direction, and color of cells in layer-2, layer-3, and layer-4 of monkey striate cortex. J Neurosci 15(3):1808–1818PubMed Leventhal AG, Thompson KG, Liu D, Zhou YF, Ault SJ (1995) Concomitant sensitivity to orientation, direction, and color of cells in layer-2, layer-3, and layer-4 of monkey striate cortex. J Neurosci 15(3):1808–1818PubMed
Zurück zum Zitat Levitt JB, Lund JS (2002) The spatial extent over which neurons in macaque striate cortex pool visual signals. Vis Neurosci 19(4):439–452PubMedCrossRef Levitt JB, Lund JS (2002) The spatial extent over which neurons in macaque striate cortex pool visual signals. Vis Neurosci 19(4):439–452PubMedCrossRef
Zurück zum Zitat Li W, Thier P, Wehrhahn C (2000) Contextual influence on orientation discrimination of humans and responses of neurons in V1 of alert monkeys. J Neurophysiol 83(2):941–954PubMed Li W, Thier P, Wehrhahn C (2000) Contextual influence on orientation discrimination of humans and responses of neurons in V1 of alert monkeys. J Neurophysiol 83(2):941–954PubMed
Zurück zum Zitat Linsker R (1986) From basic network principles to neural architecture—emergence of orientation columns. Proc Natl Acad Sci USA 83(22):8779–8783PubMedCrossRef Linsker R (1986) From basic network principles to neural architecture—emergence of orientation columns. Proc Natl Acad Sci USA 83(22):8779–8783PubMedCrossRef
Zurück zum Zitat Livingstone MS, Hubel DH (1984) Anatomy and physiology of a color system in the primate visual-cortex. J Neurosci 4(1):309–356PubMed Livingstone MS, Hubel DH (1984) Anatomy and physiology of a color system in the primate visual-cortex. J Neurosci 4(1):309–356PubMed
Zurück zum Zitat Lund JS, Angelucci A, Bressloff PC (2003) Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cereb Cortex 13(1):15–24PubMedCrossRef Lund JS, Angelucci A, Bressloff PC (2003) Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cereb Cortex 13(1):15–24PubMedCrossRef
Zurück zum Zitat Lyon DC, Jain N, Kaas JH (1998) Cortical connections of striate and extrastriate visual areas in tree shrews. J Comp Neurol 401(1):109–128PubMedCrossRef Lyon DC, Jain N, Kaas JH (1998) Cortical connections of striate and extrastriate visual areas in tree shrews. J Comp Neurol 401(1):109–128PubMedCrossRef
Zurück zum Zitat MacEvoy SP, Hanks TD, Paradiso MA (2008) Macaque V1 activity during natural vision: effects of natural scenes and saccades. J Neurophysiol 99(2):460–472PubMedCrossRef MacEvoy SP, Hanks TD, Paradiso MA (2008) Macaque V1 activity during natural vision: effects of natural scenes and saccades. J Neurophysiol 99(2):460–472PubMedCrossRef
Zurück zum Zitat Maertens M, Pollmann S (2005) fMRI reveals a common neural substrate of illusory and real contours in V1 after perceptual learning. J Cogn Neurosci 17(10):1553–1564PubMedCrossRef Maertens M, Pollmann S (2005) fMRI reveals a common neural substrate of illusory and real contours in V1 after perceptual learning. J Cogn Neurosci 17(10):1553–1564PubMedCrossRef
Zurück zum Zitat Malach R, Amir Y, Harel M, Grinvald A (1993) Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. Proc Natl Acad Sci USA 90(22):10469–10473PubMedCrossRef Malach R, Amir Y, Harel M, Grinvald A (1993) Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. Proc Natl Acad Sci USA 90(22):10469–10473PubMedCrossRef
Zurück zum Zitat Maldonado PE, Godecke I, Gray CM, Bonhoeffer T (1997) Orientation selectivity in pinwheel centers in cat striate cortex. Science 276(5318):1551–1555PubMedCrossRef Maldonado PE, Godecke I, Gray CM, Bonhoeffer T (1997) Orientation selectivity in pinwheel centers in cat striate cortex. Science 276(5318):1551–1555PubMedCrossRef
Zurück zum Zitat Mante V, Carandini M (2005) Mapping of stimulus energy in primary visual cortex. J Neurophysiol 94(1):788–798PubMedCrossRef Mante V, Carandini M (2005) Mapping of stimulus energy in primary visual cortex. J Neurophysiol 94(1):788–798PubMedCrossRef
Zurück zum Zitat Marino J, Schummers J, Lyon DC, Schwabe L, Beck O, Wiesing P, Obermayer K, Sur M (2005) Invariant computations in local cortical networks with balanced excitation and inhibition. Nat Neurosci 8(2):194–201PubMedCrossRef Marino J, Schummers J, Lyon DC, Schwabe L, Beck O, Wiesing P, Obermayer K, Sur M (2005) Invariant computations in local cortical networks with balanced excitation and inhibition. Nat Neurosci 8(2):194–201PubMedCrossRef
Zurück zum Zitat Marrocco RT, Mcclurkin JW, Young RA (1982) Modulation of lateral geniculate-nucleus cell responsiveness by visual activation of the corticogeniculate pathway. J Neurosci 2(2):256–263PubMed Marrocco RT, Mcclurkin JW, Young RA (1982) Modulation of lateral geniculate-nucleus cell responsiveness by visual activation of the corticogeniculate pathway. J Neurosci 2(2):256–263PubMed
Zurück zum Zitat Martin PR, Lee BB, White AJR, Soloman SG, Ruttiger L (2001) Chromatic sensitivity of ganglion cells in the peripheral primate retina. Nature 410(6831):933–936PubMedCrossRef Martin PR, Lee BB, White AJR, Soloman SG, Ruttiger L (2001) Chromatic sensitivity of ganglion cells in the peripheral primate retina. Nature 410(6831):933–936PubMedCrossRef
Zurück zum Zitat Mizobe K, Polat U, Pettet MW, Kasamatsu T (2001) Facilitation and suppression of single striate-cell activity by spatially discrete pattern stimuli presented beyond the receptive field. Vis Neurosci 18(3):377–391PubMedCrossRef Mizobe K, Polat U, Pettet MW, Kasamatsu T (2001) Facilitation and suppression of single striate-cell activity by spatially discrete pattern stimuli presented beyond the receptive field. Vis Neurosci 18(3):377–391PubMedCrossRef
Zurück zum Zitat Moon CH, Fukuda M, Park SH, Kim SG (2007) Neural interpretation of blood oxygenation level-dependent fMRI maps at submillimeter columnar resolution. J Neurosci 27(26):6892–6902PubMedCrossRef Moon CH, Fukuda M, Park SH, Kim SG (2007) Neural interpretation of blood oxygenation level-dependent fMRI maps at submillimeter columnar resolution. J Neurosci 27(26):6892–6902PubMedCrossRef
Zurück zum Zitat Mullen KT (1991) Color-vision as a post-receptoral specialization of the central visual-field. Vision Res 31(1):119–130PubMedCrossRef Mullen KT (1991) Color-vision as a post-receptoral specialization of the central visual-field. Vision Res 31(1):119–130PubMedCrossRef
Zurück zum Zitat Murphy KM, Jones DG, Fenstemaker SB, Pegado VD, Kiorpes L, Movshon JA (1998) Spacing of cytochrome oxidase blobs in visual cortex of normal and strabismic monkeys. Cereb Cortex 8(3):237–244PubMedCrossRef Murphy KM, Jones DG, Fenstemaker SB, Pegado VD, Kiorpes L, Movshon JA (1998) Spacing of cytochrome oxidase blobs in visual cortex of normal and strabismic monkeys. Cereb Cortex 8(3):237–244PubMedCrossRef
Zurück zum Zitat Nauhaus I, Benucci A, Carandini M, Ringach DL (2008) Neuronal selectivity and local map structure in visual cortex. Neuron 57(5):673–679PubMedCrossRef Nauhaus I, Benucci A, Carandini M, Ringach DL (2008) Neuronal selectivity and local map structure in visual cortex. Neuron 57(5):673–679PubMedCrossRef
Zurück zum Zitat Nauhaus I, Busse L, Carandini M, Ringach DL (2009) Stimulus contrast modulates functional connectivity in visual cortex. Nat Neurosci 12(1):70–76PubMedCrossRef Nauhaus I, Busse L, Carandini M, Ringach DL (2009) Stimulus contrast modulates functional connectivity in visual cortex. Nat Neurosci 12(1):70–76PubMedCrossRef
Zurück zum Zitat Obermayer K, Blasdel GG (1993) Geometry of orientation and ocular dominance columns in monkey striate cortex. J Neurosci 13(10):4114–4129PubMed Obermayer K, Blasdel GG (1993) Geometry of orientation and ocular dominance columns in monkey striate cortex. J Neurosci 13(10):4114–4129PubMed
Zurück zum Zitat Obermayer K, Ritter H, Schulten K (1990) A principle for the formation of the spatial structure of cortical feature maps. Proc Natl Acad Sci USA 87(21):8345–8349PubMedCrossRef Obermayer K, Ritter H, Schulten K (1990) A principle for the formation of the spatial structure of cortical feature maps. Proc Natl Acad Sci USA 87(21):8345–8349PubMedCrossRef
Zurück zum Zitat Ohki K, Chung SY, Kara P, Hubener M, Bonhoeffer T, Reid RC (2006) Highly ordered arrangement of single neurons in orientation pinwheels. Nature 442(7105):925–928PubMedCrossRef Ohki K, Chung SY, Kara P, Hubener M, Bonhoeffer T, Reid RC (2006) Highly ordered arrangement of single neurons in orientation pinwheels. Nature 442(7105):925–928PubMedCrossRef
Zurück zum Zitat Peters A, Sethares C (1996) Myelinated axons and the pyramidal cell modules in monkey primary visual cortex. J Comp Neurol 365(2):232–255PubMedCrossRef Peters A, Sethares C (1996) Myelinated axons and the pyramidal cell modules in monkey primary visual cortex. J Comp Neurol 365(2):232–255PubMedCrossRef
Zurück zum Zitat Plomp G, van Leeuwen C, Ioannides A (2009) Flexible resource allocation in visual cortex accommodates surrounding, semantic, and task-specific context. Hum Brain Mapp (in press) Plomp G, van Leeuwen C, Ioannides A (2009) Flexible resource allocation in visual cortex accommodates surrounding, semantic, and task-specific context. Hum Brain Mapp (in press)
Zurück zum Zitat Ramsden BM, Hung CP, Roe AW (2001) Real and illusory contour processing in area VI of the primate: a cortical balancing act. Cereb Cortex 11(7):648–665PubMedCrossRef Ramsden BM, Hung CP, Roe AW (2001) Real and illusory contour processing in area VI of the primate: a cortical balancing act. Cereb Cortex 11(7):648–665PubMedCrossRef
Zurück zum Zitat Ringach DL, Hawken MJ, Shapley R (1997) Dynamics of orientation tuning in macaque primary visual cortex. Nature 387(6630):281–284PubMedCrossRef Ringach DL, Hawken MJ, Shapley R (1997) Dynamics of orientation tuning in macaque primary visual cortex. Nature 387(6630):281–284PubMedCrossRef
Zurück zum Zitat Rockland KS, Knutson T (2001) Axon collaterals of Meynert cells diverge over large portions of area V1 in the macaque monkey. J Comp Neurol 441(2):134–147PubMedCrossRef Rockland KS, Knutson T (2001) Axon collaterals of Meynert cells diverge over large portions of area V1 in the macaque monkey. J Comp Neurol 441(2):134–147PubMedCrossRef
Zurück zum Zitat Rockland KS, Lund JS (1983) Intrinsic laminar lattice connections in primate visual-cortex. J Comp Neurol 216(3):303–318PubMedCrossRef Rockland KS, Lund JS (1983) Intrinsic laminar lattice connections in primate visual-cortex. J Comp Neurol 216(3):303–318PubMedCrossRef
Zurück zum Zitat Rockland KS, Vanhoesen GW (1994) Direct temporal-occipital feedback connections to striate cortex (V1) in the Macaque Monkey. Cereb Cortex 4(3):300–313PubMedCrossRef Rockland KS, Vanhoesen GW (1994) Direct temporal-occipital feedback connections to striate cortex (V1) in the Macaque Monkey. Cereb Cortex 4(3):300–313PubMedCrossRef
Zurück zum Zitat Rockland KS, Saleem KS, Tanaka K (1994) Divergent feedback connections from areas V4 and Teo in the Macaque. Vis Neurosci 11(3):579–600PubMedCrossRef Rockland KS, Saleem KS, Tanaka K (1994) Divergent feedback connections from areas V4 and Teo in the Macaque. Vis Neurosci 11(3):579–600PubMedCrossRef
Zurück zum Zitat Roelfsema PR, Lamme VAF, Spekreijse H (1998) Object-based attention in the primary visual cortex of the macaque monkey. Nature 395(6700):376–381PubMedCrossRef Roelfsema PR, Lamme VAF, Spekreijse H (1998) Object-based attention in the primary visual cortex of the macaque monkey. Nature 395(6700):376–381PubMedCrossRef
Zurück zum Zitat Rolls ET, Cowey A (1970) Topography of the retina and striate cortex and its relationship to visual acuity in rhesus monkeys and squirrel monkeys. Exp Brain Res 10(3):298–310PubMedCrossRef Rolls ET, Cowey A (1970) Topography of the retina and striate cortex and its relationship to visual acuity in rhesus monkeys and squirrel monkeys. Exp Brain Res 10(3):298–310PubMedCrossRef
Zurück zum Zitat Rossi AF, Desimone R, Ungerleider LG (2001) Contextual modulation in primary visual cortex of macaques. J Neurosci 21(5):1698–1709PubMed Rossi AF, Desimone R, Ungerleider LG (2001) Contextual modulation in primary visual cortex of macaques. J Neurosci 21(5):1698–1709PubMed
Zurück zum Zitat Sasaki Y, Rajimehr R, Kim BW, Ekstrom LB, Vanduffel W, Tootell RB (2006) The radial bias: a different slant on visual orientation sensitivity in human and nonhuman primates. Neuron 51(5):661–670PubMedCrossRef Sasaki Y, Rajimehr R, Kim BW, Ekstrom LB, Vanduffel W, Tootell RB (2006) The radial bias: a different slant on visual orientation sensitivity in human and nonhuman primates. Neuron 51(5):661–670PubMedCrossRef
Zurück zum Zitat Sceniak MP, Hawken MJ, Shapley R (2001) Visual spatial characterization of macaque V1 neurons. J Neurophysiol 85(5):1873–1887PubMed Sceniak MP, Hawken MJ, Shapley R (2001) Visual spatial characterization of macaque V1 neurons. J Neurophysiol 85(5):1873–1887PubMed
Zurück zum Zitat Schiller PH, Finlay BL, Volman SF (1976) Quantitative studies of single-cell properties in monkey striate cortex. III. Spatial frequency. J Neurophysiol 39(6):1334–1351PubMed Schiller PH, Finlay BL, Volman SF (1976) Quantitative studies of single-cell properties in monkey striate cortex. III. Spatial frequency. J Neurophysiol 39(6):1334–1351PubMed
Zurück zum Zitat Schmid AM (2008) The processing of feature discontinuities for different cue types in primary visual cortex. Brain Res 1238:59–74PubMedCrossRef Schmid AM (2008) The processing of feature discontinuities for different cue types in primary visual cortex. Brain Res 1238:59–74PubMedCrossRef
Zurück zum Zitat Schummers J, Marino J, Sur M (2002) Synaptic integration by V1 neurons depends on location within the orientation map. Neuron 36(5):969–978PubMedCrossRef Schummers J, Marino J, Sur M (2002) Synaptic integration by V1 neurons depends on location within the orientation map. Neuron 36(5):969–978PubMedCrossRef
Zurück zum Zitat Schummers J, Yu HB, Sur M (2008) Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320(5883):1638–1643PubMedCrossRef Schummers J, Yu HB, Sur M (2008) Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320(5883):1638–1643PubMedCrossRef
Zurück zum Zitat Schwabe L, Obermayer K, Angelucci A, Bressloff PC (2006) The role of feedback in shaping the extra-classical receptive field of cortical neurons: a recurrent network model. J Neurosci 26(36):9117–9129PubMedCrossRef Schwabe L, Obermayer K, Angelucci A, Bressloff PC (2006) The role of feedback in shaping the extra-classical receptive field of cortical neurons: a recurrent network model. J Neurosci 26(36):9117–9129PubMedCrossRef
Zurück zum Zitat Sheth BR, Sharma J, Rao SC, Sur M (1996) Orientation maps of subjective contours in visual cortex. Science 274(5295):2110–2115PubMedCrossRef Sheth BR, Sharma J, Rao SC, Sur M (1996) Orientation maps of subjective contours in visual cortex. Science 274(5295):2110–2115PubMedCrossRef
Zurück zum Zitat Shostak Y, Ding YC, Mavity-Hudson J, Casagrande VA (2002) Cortical synaptic arrangements of the third visual pathway in three primate species: Macaca mulatta, Saimiri sciureus, and Aotus trivirgatus. J Neurosci 22(7):2885–2893PubMed Shostak Y, Ding YC, Mavity-Hudson J, Casagrande VA (2002) Cortical synaptic arrangements of the third visual pathway in three primate species: Macaca mulatta, Saimiri sciureus, and Aotus trivirgatus. J Neurosci 22(7):2885–2893PubMed
Zurück zum Zitat Sillito AM, Jones HE (1996) Context-dependent interactions and visual processing in V1. J Physiol Paris 90(3–4):205–209PubMedCrossRef Sillito AM, Jones HE (1996) Context-dependent interactions and visual processing in V1. J Physiol Paris 90(3–4):205–209PubMedCrossRef
Zurück zum Zitat Silveira LCL, Perry VH, Yamada ES (1993) The retinal ganglion cell distribution and the representation of the visual field in area 17 of the owl monkey, Aotus trivirgatus. Visual Neurosci 10:887--897CrossRef Silveira LCL, Perry VH, Yamada ES (1993) The retinal ganglion cell distribution and the representation of the visual field in area 17 of the owl monkey, Aotus trivirgatus. Visual Neurosci 10:887--897CrossRef
Zurück zum Zitat Slovin H, Arieli A, Hildesheim R, Grinvald A (2002) Long-term voltage-sensitive dye imaging reveals cortical dynamics in behaving monkeys. J Neurophysiol 88(6):3421–3438PubMedCrossRef Slovin H, Arieli A, Hildesheim R, Grinvald A (2002) Long-term voltage-sensitive dye imaging reveals cortical dynamics in behaving monkeys. J Neurophysiol 88(6):3421–3438PubMedCrossRef
Zurück zum Zitat Stettler DD, Das A, Bennett J, Gilbert CD (2002) Lateral connectivity and contextual interactions in macaque primary visual cortex. Neuron 36(4):739–750PubMedCrossRef Stettler DD, Das A, Bennett J, Gilbert CD (2002) Lateral connectivity and contextual interactions in macaque primary visual cortex. Neuron 36(4):739–750PubMedCrossRef
Zurück zum Zitat Sugita Y (1999) Grouping of image fragments in primary visual cortex. Nature 401(6750):269–272PubMedCrossRef Sugita Y (1999) Grouping of image fragments in primary visual cortex. Nature 401(6750):269–272PubMedCrossRef
Zurück zum Zitat Super H, Spekreijse H, Lamme VAF (2001) A neural correlate of working memory in the monkey primary visual cortex. Science 293(5527):120–124PubMedCrossRef Super H, Spekreijse H, Lamme VAF (2001) A neural correlate of working memory in the monkey primary visual cortex. Science 293(5527):120–124PubMedCrossRef
Zurück zum Zitat Super H, van der Togt C, Spekreijse H, Lamme VAF (2004) Correspondence of presaccadic activity in the monkey primary visual cortex with saccadic eye movements. Proc Natl Acad Sci USA 101(9):3230–3235PubMedCrossRef Super H, van der Togt C, Spekreijse H, Lamme VAF (2004) Correspondence of presaccadic activity in the monkey primary visual cortex with saccadic eye movements. Proc Natl Acad Sci USA 101(9):3230–3235PubMedCrossRef
Zurück zum Zitat Swindale NV (2004) How different feature spaces may be represented in cortical maps. Netw-Comput Neural Syst 15(4):217–242CrossRef Swindale NV (2004) How different feature spaces may be represented in cortical maps. Netw-Comput Neural Syst 15(4):217–242CrossRef
Zurück zum Zitat Swindale NV, Bauer HU (1998) Application of Kohonen’s self-organizing feature map algorithm to cortical maps of orientation and direction preference. Proc R Soc Lond B Biol Sci 265(1398):827–838CrossRef Swindale NV, Bauer HU (1998) Application of Kohonen’s self-organizing feature map algorithm to cortical maps of orientation and direction preference. Proc R Soc Lond B Biol Sci 265(1398):827–838CrossRef
Zurück zum Zitat Swindale NV, Shoham D, Grinvald A, Bonhoeffer T, Hubener M (2000) Visual cortex maps are optimized for uniform coverage. Nat Neurosci 3(8):822–826PubMedCrossRef Swindale NV, Shoham D, Grinvald A, Bonhoeffer T, Hubener M (2000) Visual cortex maps are optimized for uniform coverage. Nat Neurosci 3(8):822–826PubMedCrossRef
Zurück zum Zitat Swindale NV, Grinvald A, Shmuel A (2003) The spatial pattern of response magnitude and selectivity for orientation and direction in cat visual cortex. Cereb Cortex 13(3):225–238PubMedCrossRef Swindale NV, Grinvald A, Shmuel A (2003) The spatial pattern of response magnitude and selectivity for orientation and direction in cat visual cortex. Cereb Cortex 13(3):225–238PubMedCrossRef
Zurück zum Zitat Tani T, Yokoi I, Ito M, Tanaka S, Komatsu H (2003) Functional organization of the cat visual cortex in relation to the representation of a uniform surface. J Neurophysiol 89(2):1112–1125PubMedCrossRef Tani T, Yokoi I, Ito M, Tanaka S, Komatsu H (2003) Functional organization of the cat visual cortex in relation to the representation of a uniform surface. J Neurophysiol 89(2):1112–1125PubMedCrossRef
Zurück zum Zitat Tootell RBH, Silverman MS, Devalois RL (1981) Spatial-frequency columns in primary visual-cortex. Science 214(4522):813–815PubMedCrossRef Tootell RBH, Silverman MS, Devalois RL (1981) Spatial-frequency columns in primary visual-cortex. Science 214(4522):813–815PubMedCrossRef
Zurück zum Zitat Tootell RBH, Hamilton SL, Switkes E (1988a) Functional-anatomy of macaque striate cortex.4. Contrast and Magno-Parvo streams. J Neurosci 8(5):1594–1609PubMed Tootell RBH, Hamilton SL, Switkes E (1988a) Functional-anatomy of macaque striate cortex.4. Contrast and Magno-Parvo streams. J Neurosci 8(5):1594–1609PubMed
Zurück zum Zitat Tootell RBH, Silverman MS, Hamilton SL, Devalois RL, Switkes E (1988b) Functional-anatomy of macaque striate cortex.3. Color. J Neurosci 8(5):1569–1593PubMed Tootell RBH, Silverman MS, Hamilton SL, Devalois RL, Switkes E (1988b) Functional-anatomy of macaque striate cortex.3. Color. J Neurosci 8(5):1569–1593PubMed
Zurück zum Zitat Tootell RBH, Silverman MS, Hamilton SL, Switkes E, Devalois RL (1988c) Functional-anatomy of macaque striate cortex.5. Spatial-frequency. J Neurosci 8(5):1610–1624PubMed Tootell RBH, Silverman MS, Hamilton SL, Switkes E, Devalois RL (1988c) Functional-anatomy of macaque striate cortex.5. Spatial-frequency. J Neurosci 8(5):1610–1624PubMed
Zurück zum Zitat Toth LJ, Rao SC, Kim DS, Somers D, Sur M (1996) Subthreshold facilitation and suppression in primary visual cortex revealed by intrinsic signal imaging. Proc Natl Acad Sci USA 93(18):9869–9874PubMedCrossRef Toth LJ, Rao SC, Kim DS, Somers D, Sur M (1996) Subthreshold facilitation and suppression in primary visual cortex revealed by intrinsic signal imaging. Proc Natl Acad Sci USA 93(18):9869–9874PubMedCrossRef
Zurück zum Zitat Tso DY, Gilbert CD (1988) The organization of chromatic and spatial interactions in the primate striate cortex. J Neurosci 8(5):1712–1727 Tso DY, Gilbert CD (1988) The organization of chromatic and spatial interactions in the primate striate cortex. J Neurosci 8(5):1712–1727
Zurück zum Zitat van Leeuwen C (1995) Task, intention, context, globality, ambiguity: more of the same. In: Kruse P, Stadler M (eds) Ambiguity in mind and nature. Springer, Berlin van Leeuwen C (1995) Task, intention, context, globality, ambiguity: more of the same. In: Kruse P, Stadler M (eds) Ambiguity in mind and nature. Springer, Berlin
Zurück zum Zitat van Leeuwen C (1998) Visual perception on the Edge of Chaos. In: Jordon JS (ed) Systems theories and a priori aspects of perception. Elsevier, Amsterdam van Leeuwen C (1998) Visual perception on the Edge of Chaos. In: Jordon JS (ed) Systems theories and a priori aspects of perception. Elsevier, Amsterdam
Zurück zum Zitat Vanduffel W, Tootell RBH, Schoups AA, Orban GA (2002) The organization of orientation selectivity throughout macaque visual cortex. Cereb Cortex 12(6):647–662PubMedCrossRef Vanduffel W, Tootell RBH, Schoups AA, Orban GA (2002) The organization of orientation selectivity throughout macaque visual cortex. Cereb Cortex 12(6):647–662PubMedCrossRef
Zurück zum Zitat Vinje WE, Gallant JL (2000) Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287(5456):1273–1276PubMedCrossRef Vinje WE, Gallant JL (2000) Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287(5456):1273–1276PubMedCrossRef
Zurück zum Zitat Wachtler T, Sejnowski TJ, Albright TD (2003) Representation of color stimuli in awake macaque primary visual cortex. Neuron 37(4):681–691PubMedCrossRef Wachtler T, Sejnowski TJ, Albright TD (2003) Representation of color stimuli in awake macaque primary visual cortex. Neuron 37(4):681–691PubMedCrossRef
Zurück zum Zitat Wennekers T (2008) Tuned solutions in dynamic neural fields as building blocks for extended EEG models. Cogn Neurodyn 2(2):137–146PubMedCrossRef Wennekers T (2008) Tuned solutions in dynamic neural fields as building blocks for extended EEG models. Cogn Neurodyn 2(2):137–146PubMedCrossRef
Zurück zum Zitat Westheimer G (2003) The distribution of preferred orientations in the peripheral visual field. Vision Res 43(1):53–57PubMedCrossRef Westheimer G (2003) The distribution of preferred orientations in the peripheral visual field. Vision Res 43(1):53–57PubMedCrossRef
Zurück zum Zitat White LE, Bosking WH, Fitzpatrick D (2001) Consistent mapping of orientation preference across irregular functional domains in ferret visual cortex. Vis Neurosci 18(1):65–76PubMedCrossRef White LE, Bosking WH, Fitzpatrick D (2001) Consistent mapping of orientation preference across irregular functional domains in ferret visual cortex. Vis Neurosci 18(1):65–76PubMedCrossRef
Zurück zum Zitat Wielaard J, Sajda P (2006) Extraclassical receptive field phenomena and short-range connectivity in V1. Cereb Cortex 16(11):1531–1545PubMedCrossRef Wielaard J, Sajda P (2006) Extraclassical receptive field phenomena and short-range connectivity in V1. Cereb Cortex 16(11):1531–1545PubMedCrossRef
Zurück zum Zitat Wong-Riley M (1979) Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res 171(1):11–28PubMedCrossRef Wong-Riley M (1979) Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res 171(1):11–28PubMedCrossRef
Zurück zum Zitat Wright JJ, Bourke PD (2008) An outline of functional self-organization in V1: synchrony, STLR and Hebb rules. Cogn Neurodyn 2(2):147–157PubMedCrossRef Wright JJ, Bourke PD (2008) An outline of functional self-organization in V1: synchrony, STLR and Hebb rules. Cogn Neurodyn 2(2):147–157PubMedCrossRef
Zurück zum Zitat Wright JJ, Alexander DM, Bourke PD (2006) Contribution of lateral interactions in V1 to organization of response properties. Vision Res 46(17):2703–2720PubMedCrossRef Wright JJ, Alexander DM, Bourke PD (2006) Contribution of lateral interactions in V1 to organization of response properties. Vision Res 46(17):2703–2720PubMedCrossRef
Zurück zum Zitat Xu W, Huang X, Takagaki K, Wu JY (2007) Compression and reflection of visually evoked cortical waves. Neuron 55(1):119–129PubMedCrossRef Xu W, Huang X, Takagaki K, Wu JY (2007) Compression and reflection of visually evoked cortical waves. Neuron 55(1):119–129PubMedCrossRef
Zurück zum Zitat Yen SC, Baker J, Gray CM (2007) Heterogeneity in the responses of adjacent neurons to natural stimuli in cat striate cortex. J Neurophysiol 97(2):1326–1341PubMedCrossRef Yen SC, Baker J, Gray CM (2007) Heterogeneity in the responses of adjacent neurons to natural stimuli in cat striate cortex. J Neurophysiol 97(2):1326–1341PubMedCrossRef
Zurück zum Zitat Yoshioka T, Blasdel GG, Levitt JB, Lund JS (1996) Relation between patterns of intrinsic lateral connectivity, ocular dominance, and cytochrome oxidase-reactive regions in macaque monkey striate cortex. Cereb Cortex 6(2):297–310PubMedCrossRef Yoshioka T, Blasdel GG, Levitt JB, Lund JS (1996) Relation between patterns of intrinsic lateral connectivity, ocular dominance, and cytochrome oxidase-reactive regions in macaque monkey striate cortex. Cereb Cortex 6(2):297–310PubMedCrossRef
Zurück zum Zitat Young MP (2000) The architecture of visual cortex and inferential processes in vision. Spat Vis 13(2–3):137–146PubMedCrossRef Young MP (2000) The architecture of visual cortex and inferential processes in vision. Spat Vis 13(2–3):137–146PubMedCrossRef
Zurück zum Zitat Yousef T, Toth E, Rausch M, Eysel UT, Kisvarday ZF (2001) Topography of orientation centre connections in the primary visual cortex of the cat. Neuroreport 12(8):1693–1699PubMedCrossRef Yousef T, Toth E, Rausch M, Eysel UT, Kisvarday ZF (2001) Topography of orientation centre connections in the primary visual cortex of the cat. Neuroreport 12(8):1693–1699PubMedCrossRef
Zurück zum Zitat Zhan CA, Baker CL (2006) Boundary cue invariance in cortical orientation maps. Cereb Cortex 16(6):896–906PubMedCrossRef Zhan CA, Baker CL (2006) Boundary cue invariance in cortical orientation maps. Cereb Cortex 16(6):896–906PubMedCrossRef
Zurück zum Zitat Zhan CA, Baker CL (2008) Critical spatial frequencies for illusory contour processing in early visual cortex. Cereb Cortex 18(5):1029–1041PubMedCrossRef Zhan CA, Baker CL (2008) Critical spatial frequencies for illusory contour processing in early visual cortex. Cereb Cortex 18(5):1029–1041PubMedCrossRef
Zurück zum Zitat Zheng D, Lamantia AS, Purves D (1991) Specialized vascularization of the primate visual-cortex. J Neurosci 11(8):2622–2629PubMed Zheng D, Lamantia AS, Purves D (1991) Specialized vascularization of the primate visual-cortex. J Neurosci 11(8):2622–2629PubMed
Zurück zum Zitat Zhou YX, Baker CL (1996) Spatial properties of envelope-responsive cells in area 17 and 18 neurons of the cat. J Neurophysiol 75(3):1038–1050PubMed Zhou YX, Baker CL (1996) Spatial properties of envelope-responsive cells in area 17 and 18 neurons of the cat. J Neurophysiol 75(3):1038–1050PubMed
Zurück zum Zitat Zhou H, Friedman HS, von der Heydt R (2000) Coding of border ownership in monkey visual cortex. J Neurosci 20(17):6594–6611PubMed Zhou H, Friedman HS, von der Heydt R (2000) Coding of border ownership in monkey visual cortex. J Neurosci 20(17):6594–6611PubMed
Zurück zum Zitat Zipser K, Lamme VAF, Schiller PH (1996) Contextual modulation in primary visual cortex. J Neurosci 16(22):7376–7389PubMed Zipser K, Lamme VAF, Schiller PH (1996) Contextual modulation in primary visual cortex. J Neurosci 16(22):7376–7389PubMed
Metadaten
Titel
Mapping of contextual modulation in the population response of primary visual cortex
verfasst von
David M. Alexander
Cees Van Leeuwen
Publikationsdatum
01.03.2010
Verlag
Springer Netherlands
Erschienen in
Cognitive Neurodynamics / Ausgabe 1/2010
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-009-9098-9

Weitere Artikel der Ausgabe 1/2010

Cognitive Neurodynamics 1/2010 Zur Ausgabe

Neuer Inhalt