Skip to main content
Erschienen in: Cognitive Neurodynamics 1/2013

01.02.2013 | Research Article

Neural mechanism of dynamic responses of neurons in inferior temporal cortex in face perception

verfasst von: Yuichiro Yamada, Yoshiki Kashimori

Erschienen in: Cognitive Neurodynamics | Ausgabe 1/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Understanding the neural mechanisms of object and face recognition is one of the fundamental challenges of visual neuroscience. The neurons in inferior temporal (IT) cortex have been reported to exhibit dynamic responses to face stimuli. However, little is known about how the dynamic properties of IT neurons emerge in the face information processing. To address this issue, we made a model of IT cortex, which performs face perception via an interaction between different IT networks. The model was based on the face information processed by three resolution maps in early visual areas. The network model of IT cortex consists of four kinds of networks, in which the information about a whole face is combined with the information about its face parts and their arrangements. We show here that the learning of face stimuli makes the functional connections between these IT networks, causing a high spike correlation of IT neuron pairs. A dynamic property of subthreshold membrane potential of IT neuron, produced by Hodgkin–Huxley model, enables the coordination of temporal information without changing the firing rate, providing the basis of the mechanism underlying face perception. We show also that the hierarchical processing of face information allows IT cortex to perform a “coarse-to-fine” processing of face information. The results presented here seem to be compatible with experimental data about dynamic properties of IT neurons.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Afraz S-R, Kiani R, Esteky H (2006) Microstimulation of inferotemporal cortex influences face categorization. Nature 442:692–695PubMedCrossRef Afraz S-R, Kiani R, Esteky H (2006) Microstimulation of inferotemporal cortex influences face categorization. Nature 442:692–695PubMedCrossRef
Zurück zum Zitat Baker CI, Behrmann M, Olson C (2002) Impact of learning on representation of parts and wholes in monkey inferotemporal cortex. Nat Neurosci 5:1210–1216PubMedCrossRef Baker CI, Behrmann M, Olson C (2002) Impact of learning on representation of parts and wholes in monkey inferotemporal cortex. Nat Neurosci 5:1210–1216PubMedCrossRef
Zurück zum Zitat Bakker A, Kirwan CB, Miller M, Stark CE (2008) Pattern separation in the human hippocampal CA3 and dentate gyrus. Science 319:1640–1642PubMedCrossRef Bakker A, Kirwan CB, Miller M, Stark CE (2008) Pattern separation in the human hippocampal CA3 and dentate gyrus. Science 319:1640–1642PubMedCrossRef
Zurück zum Zitat Desimone R, Albright TD, Gross CG, Bruce C (1984) Stimulus-selective properties of inferior temporal neurons in the macaque. J Neurosci 4:2051–2062PubMed Desimone R, Albright TD, Gross CG, Bruce C (1984) Stimulus-selective properties of inferior temporal neurons in the macaque. J Neurosci 4:2051–2062PubMed
Zurück zum Zitat Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top–down processing. Nat Rev Neurosci 2:704–716PubMedCrossRef Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top–down processing. Nat Rev Neurosci 2:704–716PubMedCrossRef
Zurück zum Zitat Freedman DJ, Riesenhuber M, Poggio T, Miller EK (2003) A comparison of primate prefrontal and inferior temporal cortices during visual categorization. J Neurosci 23:5235–5246PubMed Freedman DJ, Riesenhuber M, Poggio T, Miller EK (2003) A comparison of primate prefrontal and inferior temporal cortices during visual categorization. J Neurosci 23:5235–5246PubMed
Zurück zum Zitat Freedman DJ, Riesenhuber M, Poggio T, Miller EK (2006) Experience-dependent sharpening of visual shape selectivity in inferior temporal cortex. Cereb Cortex 16:1631–1644PubMedCrossRef Freedman DJ, Riesenhuber M, Poggio T, Miller EK (2006) Experience-dependent sharpening of visual shape selectivity in inferior temporal cortex. Cereb Cortex 16:1631–1644PubMedCrossRef
Zurück zum Zitat Freiwald WA, Tsao DY (2010) Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science 330:845–851PubMedCrossRef Freiwald WA, Tsao DY (2010) Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science 330:845–851PubMedCrossRef
Zurück zum Zitat Frie P, Nikolic D, Singer W (2007) The gamma cycle. Trends Neurosci 30:309–316CrossRef Frie P, Nikolic D, Singer W (2007) The gamma cycle. Trends Neurosci 30:309–316CrossRef
Zurück zum Zitat Fujita I, Tanaka K, Ito M, Cheng K (1992) Columns for visual features of objects in monkey inferotemporal cortex. Nature 360:343–346PubMedCrossRef Fujita I, Tanaka K, Ito M, Cheng K (1992) Columns for visual features of objects in monkey inferotemporal cortex. Nature 360:343–346PubMedCrossRef
Zurück zum Zitat Fujita K, Kashimori Y, Kambara T (2007) Spatiotemporal burst coding for extracting features of spatiotemporally varying stimuli. Biol Cybern 97:293–305PubMedCrossRef Fujita K, Kashimori Y, Kambara T (2007) Spatiotemporal burst coding for extracting features of spatiotemporally varying stimuli. Biol Cybern 97:293–305PubMedCrossRef
Zurück zum Zitat Gallant JL, Braun J, Van Essen DC (1993) Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. Science 259:100–103PubMedCrossRef Gallant JL, Braun J, Van Essen DC (1993) Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. Science 259:100–103PubMedCrossRef
Zurück zum Zitat Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337PubMedCrossRef Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337PubMedCrossRef
Zurück zum Zitat Gross CG, Rocha-Miranda CE, Bender DB (1972) Visual properties of neurons in inferotemporal cortex of the macaque. J Neurophysiol 35:96–111PubMed Gross CG, Rocha-Miranda CE, Bender DB (1972) Visual properties of neurons in inferotemporal cortex of the macaque. J Neurophysiol 35:96–111PubMed
Zurück zum Zitat Hirabayashi T, Miyashita Y (2005) Dynamically modulated spike correlation in monkey inferior temporal cortex depending on the feature configuration within a whole object. J Neurosci 25:10299–10307PubMedCrossRef Hirabayashi T, Miyashita Y (2005) Dynamically modulated spike correlation in monkey inferior temporal cortex depending on the feature configuration within a whole object. J Neurosci 25:10299–10307PubMedCrossRef
Zurück zum Zitat Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and exciatation in nerve. J Physiol 117:500–544PubMed Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and exciatation in nerve. J Physiol 117:500–544PubMed
Zurück zum Zitat Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154PubMed Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154PubMed
Zurück zum Zitat Ito M, Komatsu H (2004) Representation of angles embedded within contour stimuli in area V2 of macaque monkeys. J Neurosci 24:3313–3324PubMedCrossRef Ito M, Komatsu H (2004) Representation of angles embedded within contour stimuli in area V2 of macaque monkeys. J Neurosci 24:3313–3324PubMedCrossRef
Zurück zum Zitat Kanwisher N, MacDermott J, Chun M (1997) The fusiform face area: a module in human extrastriate cortex specialized for the perception of faces. J Neurosci 17:4302–4311PubMed Kanwisher N, MacDermott J, Chun M (1997) The fusiform face area: a module in human extrastriate cortex specialized for the perception of faces. J Neurosci 17:4302–4311PubMed
Zurück zum Zitat Kashimori Y, Ichinose Y, Fujita K (2007) A functional role of interaction between IT cortex and PF cortex in visual categorization task. Neurocomputing 70:1813–1818CrossRef Kashimori Y, Ichinose Y, Fujita K (2007) A functional role of interaction between IT cortex and PF cortex in visual categorization task. Neurocomputing 70:1813–1818CrossRef
Zurück zum Zitat Kiani R, Esteky H, Tanaka K (2005) Differences in onset latency of macaque inferotemporal neuronal responses to primate and non-primate faces. J Neurophysiol 94:1587–1596PubMedCrossRef Kiani R, Esteky H, Tanaka K (2005) Differences in onset latency of macaque inferotemporal neuronal responses to primate and non-primate faces. J Neurophysiol 94:1587–1596PubMedCrossRef
Zurück zum Zitat Kobatake E, Tanaka K (1994) Neural selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. J Neurophysiol 71:856–867PubMed Kobatake E, Tanaka K (1994) Neural selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. J Neurophysiol 71:856–867PubMed
Zurück zum Zitat Kobatake E, Wang G, Tanaka K (1998) Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. J Neurophysiol 80:324–330PubMed Kobatake E, Wang G, Tanaka K (1998) Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. J Neurophysiol 80:324–330PubMed
Zurück zum Zitat Leopold DA, O’Toole AJ, Vetter T, Branz N (2001) Prototype-referenced shape encoding revealed by high-level aftereffects. Nat Neurosci 4:89–94PubMedCrossRef Leopold DA, O’Toole AJ, Vetter T, Branz N (2001) Prototype-referenced shape encoding revealed by high-level aftereffects. Nat Neurosci 4:89–94PubMedCrossRef
Zurück zum Zitat Leopold DA, Bondar IV, Giese MA (2006) Norm-based face encoding by single neurons in the monkey inferotemporal cortex. Nature 442:572–575PubMedCrossRef Leopold DA, Bondar IV, Giese MA (2006) Norm-based face encoding by single neurons in the monkey inferotemporal cortex. Nature 442:572–575PubMedCrossRef
Zurück zum Zitat Logothetis NK, Pauls J, Poggio T (1995) Shape representation in the inferior temporal cortex in monkeys. Curr Biol 5:552–563PubMedCrossRef Logothetis NK, Pauls J, Poggio T (1995) Shape representation in the inferior temporal cortex in monkeys. Curr Biol 5:552–563PubMedCrossRef
Zurück zum Zitat Messinger A, Squire LR, Zola SM, Albright TD (2005) Neural representations of stimulus associations develop in the temporal lobe during learning. Proc Natl Acad Sci USA 98:12239–12244CrossRef Messinger A, Squire LR, Zola SM, Albright TD (2005) Neural representations of stimulus associations develop in the temporal lobe during learning. Proc Natl Acad Sci USA 98:12239–12244CrossRef
Zurück zum Zitat Miyashita Y (2004) Cognitive memory: cellular and network mechanisms and their top–down control. Science 306:435–440PubMedCrossRef Miyashita Y (2004) Cognitive memory: cellular and network mechanisms and their top–down control. Science 306:435–440PubMedCrossRef
Zurück zum Zitat Pasupathy A, Connor CE (1999) Responses of contour features of neurons in cortical area MT in alert and anaesthetized macaque monkeys. Nature 414:905–908 Pasupathy A, Connor CE (1999) Responses of contour features of neurons in cortical area MT in alert and anaesthetized macaque monkeys. Nature 414:905–908
Zurück zum Zitat Perrett DI, Rolls ET, Caan W (1982) Visual neurons responsive to faces in the monkey temporal cortex. Exp Brain Res 47:329–342PubMedCrossRef Perrett DI, Rolls ET, Caan W (1982) Visual neurons responsive to faces in the monkey temporal cortex. Exp Brain Res 47:329–342PubMedCrossRef
Zurück zum Zitat Perrett DI, Hietanen JK, Oram MW, Benson PJ, Rolls ET (1992) Organization and functions of cell responsive to faces in the temporal cortex. Phil Trans R Soc B 335:23–30PubMedCrossRef Perrett DI, Hietanen JK, Oram MW, Benson PJ, Rolls ET (1992) Organization and functions of cell responsive to faces in the temporal cortex. Phil Trans R Soc B 335:23–30PubMedCrossRef
Zurück zum Zitat Rodriguez E, George N, Lachaux J-P, Martinerie J, Renault B, Varela FJ (1999) Perception’s shadow: long distance synchronization of human brain activity. Nature 397:430–433PubMedCrossRef Rodriguez E, George N, Lachaux J-P, Martinerie J, Renault B, Varela FJ (1999) Perception’s shadow: long distance synchronization of human brain activity. Nature 397:430–433PubMedCrossRef
Zurück zum Zitat Rolls ET (1984) Neurons in the cortex of the temporal lobe and in the amygdale of the monkey with responses selective for faces. Human Neurobiol 3:209–222 Rolls ET (1984) Neurons in the cortex of the temporal lobe and in the amygdale of the monkey with responses selective for faces. Human Neurobiol 3:209–222
Zurück zum Zitat Rolls ET (1995) Learning mechanism in the temporal lobe visual cortex. Behav Brain Res 66:177–185PubMedCrossRef Rolls ET (1995) Learning mechanism in the temporal lobe visual cortex. Behav Brain Res 66:177–185PubMedCrossRef
Zurück zum Zitat Rosenthal O, Fusi S, Hochstein S (2001) Forming classes by stimulus frequency: behavior and theory. Proc Natl Acad Sci USA 98:4265–4270PubMedCrossRef Rosenthal O, Fusi S, Hochstein S (2001) Forming classes by stimulus frequency: behavior and theory. Proc Natl Acad Sci USA 98:4265–4270PubMedCrossRef
Zurück zum Zitat Sigala N, Logothetis NK (2002) Visual categorization shapes feature selectivity in the primate temporal cortex. Nature 415:318–320PubMedCrossRef Sigala N, Logothetis NK (2002) Visual categorization shapes feature selectivity in the primate temporal cortex. Nature 415:318–320PubMedCrossRef
Zurück zum Zitat Singer W (1999) Neuronal synchrony: a versatile code for the definition of relation? Neuron 24:49–125PubMedCrossRef Singer W (1999) Neuronal synchrony: a versatile code for the definition of relation? Neuron 24:49–125PubMedCrossRef
Zurück zum Zitat Singer W, Gray CM (1995) Visual feature integration and temporal correlation hypothesis. Annu Rev Neurosci 18:555–586PubMedCrossRef Singer W, Gray CM (1995) Visual feature integration and temporal correlation hypothesis. Annu Rev Neurosci 18:555–586PubMedCrossRef
Zurück zum Zitat Soga M, Kashimori Y (2009) Functional connections between visual areas in extracting object features critical for a visual categorization task. Vis Res 49:337–347PubMedCrossRef Soga M, Kashimori Y (2009) Functional connections between visual areas in extracting object features critical for a visual categorization task. Vis Res 49:337–347PubMedCrossRef
Zurück zum Zitat Sripati AP, Olson CR (2009) Representing the forest before the trees: a global advantage effect in monkey inferotemporal cortex. J Neurosci 29:7788–7796PubMedCrossRef Sripati AP, Olson CR (2009) Representing the forest before the trees: a global advantage effect in monkey inferotemporal cortex. J Neurosci 29:7788–7796PubMedCrossRef
Zurück zum Zitat Sugase Y, Yamane S, Ueno S, Kawano K (1999) Global and fine information coded by single neurons in the temporal visual cortex. Nature 400:869–873PubMedCrossRef Sugase Y, Yamane S, Ueno S, Kawano K (1999) Global and fine information coded by single neurons in the temporal visual cortex. Nature 400:869–873PubMedCrossRef
Zurück zum Zitat Szabo M, Stetter M, Deco G, Fusi S, Giudice PD, Mattia M (2006) Learning to attend: modeling the shaping of selectivity in infero-temporal cortex in a categorization task. Biol Cybern 94:351–365PubMedCrossRef Szabo M, Stetter M, Deco G, Fusi S, Giudice PD, Mattia M (2006) Learning to attend: modeling the shaping of selectivity in infero-temporal cortex in a categorization task. Biol Cybern 94:351–365PubMedCrossRef
Zurück zum Zitat Tsao DY, Freiwald WA, Knutsen TA, Mandeville JB, Tootell RB (2003) Faces and objects in macaque cerebral cortex. Nat Neurosci 6:989–995PubMedCrossRef Tsao DY, Freiwald WA, Knutsen TA, Mandeville JB, Tootell RB (2003) Faces and objects in macaque cerebral cortex. Nat Neurosci 6:989–995PubMedCrossRef
Zurück zum Zitat Tsunoda K, Yamane Y, Nishizaki M, Tanifuji M (2001) Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns. Nat Neurosci 4:832–838PubMedCrossRef Tsunoda K, Yamane Y, Nishizaki M, Tanifuji M (2001) Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns. Nat Neurosci 4:832–838PubMedCrossRef
Zurück zum Zitat Turchi J, Saunders RC, Mishkin M (2005) Effects of cholinergic deafferentation of the rhinal cortex on visual recognition memory in monkeys. Proc Natl Acad Sci USA 102:2158–2161PubMedCrossRef Turchi J, Saunders RC, Mishkin M (2005) Effects of cholinergic deafferentation of the rhinal cortex on visual recognition memory in monkeys. Proc Natl Acad Sci USA 102:2158–2161PubMedCrossRef
Zurück zum Zitat Urgerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT press, Cambridge, pp 549–586 Urgerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT press, Cambridge, pp 549–586
Zurück zum Zitat Valentine T (1991) A unified account of the effects of distinctiveness, inversion, and race in face recognition. Quart J Exp Psychol A 43:161–204CrossRef Valentine T (1991) A unified account of the effects of distinctiveness, inversion, and race in face recognition. Quart J Exp Psychol A 43:161–204CrossRef
Zurück zum Zitat Wan H, Warburton EC, Zhu XO, Koder TJ, Park Y, Aggleton JP, Cho K, Bashir ZI, Brown MW (2004) Benzodiazepine impairment of perirhinal cortical plasticity and recognition memory. Eur J Neurosci 20:2214–2224PubMedCrossRef Wan H, Warburton EC, Zhu XO, Koder TJ, Park Y, Aggleton JP, Cho K, Bashir ZI, Brown MW (2004) Benzodiazepine impairment of perirhinal cortical plasticity and recognition memory. Eur J Neurosci 20:2214–2224PubMedCrossRef
Zurück zum Zitat Winters BD, Bussey TJ (2005a) Transient inactivation of perirhinal cortex disrupts encoding, retrieval, and consolidation of object recognition memory. J Neurosci 25:52–61PubMedCrossRef Winters BD, Bussey TJ (2005a) Transient inactivation of perirhinal cortex disrupts encoding, retrieval, and consolidation of object recognition memory. J Neurosci 25:52–61PubMedCrossRef
Zurück zum Zitat Winters BD, Bussey TJ (2005b) Glutamate receptors in perirhinal cortex mediate encoding, retrieval, and consolidation of object recognition memory. J Neurosci 25:4243–4251PubMedCrossRef Winters BD, Bussey TJ (2005b) Glutamate receptors in perirhinal cortex mediate encoding, retrieval, and consolidation of object recognition memory. J Neurosci 25:4243–4251PubMedCrossRef
Zurück zum Zitat Winters BD, Bussey TJ (2005c) Removal of cholinergic input to perirhinal cortex disrupts object recognition but not spatial working memory in the rat. Eur J Neurosci 21:2263–2270PubMedCrossRef Winters BD, Bussey TJ (2005c) Removal of cholinergic input to perirhinal cortex disrupts object recognition but not spatial working memory in the rat. Eur J Neurosci 21:2263–2270PubMedCrossRef
Zurück zum Zitat Yamane Y, Tsunoda K, Matsumoto M, Phillips AN, Tanifuji M (2006) Representation of the spatial relationship among object parts by neuron in macaque inferotemporal cortex. J Neurophysiol 96:3147–3156PubMedCrossRef Yamane Y, Tsunoda K, Matsumoto M, Phillips AN, Tanifuji M (2006) Representation of the spatial relationship among object parts by neuron in macaque inferotemporal cortex. J Neurophysiol 96:3147–3156PubMedCrossRef
Zurück zum Zitat Young MP, Yamane S (1992) Sparse population coding of face in the inferotemporal cortex. Science 256:1327–1331PubMedCrossRef Young MP, Yamane S (1992) Sparse population coding of face in the inferotemporal cortex. Science 256:1327–1331PubMedCrossRef
Zurück zum Zitat Zangenehour S, Chaudhuri A (2005) Patchy organization and asymmetric distribution of the neural correlates and face processing in monkey inferotemporal cortex. Curr Biol 15:993–1005CrossRef Zangenehour S, Chaudhuri A (2005) Patchy organization and asymmetric distribution of the neural correlates and face processing in monkey inferotemporal cortex. Curr Biol 15:993–1005CrossRef
Metadaten
Titel
Neural mechanism of dynamic responses of neurons in inferior temporal cortex in face perception
verfasst von
Yuichiro Yamada
Yoshiki Kashimori
Publikationsdatum
01.02.2013
Verlag
Springer Netherlands
Erschienen in
Cognitive Neurodynamics / Ausgabe 1/2013
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-012-9212-2

Weitere Artikel der Ausgabe 1/2013

Cognitive Neurodynamics 1/2013 Zur Ausgabe

Neuer Inhalt