Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 5/2007

01.05.2007

Multiscale Analysis of the Strength and Ductility of AA 6056 Aluminum Friction Stir Welds

verfasst von: C. Gallais, A. Simar, D. Fabregue, A. Denquin, G. Lapasset, B. de Meester, Y. Brechet, T. Pardoen

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 5/2007

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The number of parameters affecting the friction stir welding process, the subsequent forming operations, and the structural integrity is very large: chemical composition of the two welded materials, welding parameters and thermal history, initial microstructure, flow properties of each alloy, etc. A multiscale analysis based on macro- and micromechanical tests has been conducted in order to determine and quantify the phenomena controlling the mechanical properties of joints made by welding AA 6056 Al alloys in a T4 or T78 state and to construct a predictive model for plasticity and fracture. Small tensile test samples were machined inside the various zones of the welds and parallel to the welding direction to identify the local plastic and fracture properties. Macrotensile tests using samples machined transverse to the welding direction and strain maps obtained by digital image correlation (DIC) provided information about the overall strength, plastic strain localization, and fracture of the joint. Three-dimensional (3-D) finite element (FE) analysis of the deformation of the welded samples loaded transverse to the welding line based on J2 flow plasticity theory and on the parameters identified on the small test samples was used to quantify the effects of the geometrical, microstructural, and mechanical factors affecting the plastic flow localization process and the evolution of the constraint in the weak zone, which controls the damage rate. Uniform plastic flow is controlled not only by the yield strength mismatch between the weak zone and its surrounding but also by the strain hardening mismatch, both related to the precipitation of the Q phase. The ductility was addressed using a micromechanics-based damage model. A key ingredient of the model was to account for both large primary voids nucleated early on intermetallic particles and small secondary voids nucleated on dispersoïds, which have a first-order effect on the fracture of the AA 6056 Al alloy. The model is shown to capture very well the drop of the overall ductility in the welded joints.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
This overall estimate of the fracture strain was preferred, for instance, over the reduction of the cross-sectional area, because it is more representative of the local fracture strain attained inside the sample in the most damaged region where cracking initiates. Later in the article, we will provide the local value of the fracture strain owing to the simulation of the tensile test up to the point of failure. Note also that the fracture surfaces are always inclined, especially in the case of the welds, and present a complex morphology, which makes it both difficult and not really relevant to use the cross-sectional area to quantify the fracture strain.
 
2
Fabrègue and Pardoen[15] have shown that the ductility for immediate nucleation of the secondary voids is much smaller than the ductility that can be calculated for a material involving only primary voids with a volume fraction equal to the sum of the volume fraction of the primary and secondary voids.
 
Literatur
1.
Zurück zum Zitat D. Fabrègue and A. Deschamps: Mater. Sci. Forum, Proc. 8th Int. Conf. on Aluminium Alloys, Cambridge, United Kingdom, 2002, P.J. Gregson and S. Harris, eds., Trans Tech Publications, Aedermannsdorf, Switzerland, 2002, vols. 396–402, pp. 1567–72 D. Fabrègue and A. Deschamps: Mater. Sci. Forum, Proc. 8th Int. Conf. on Aluminium Alloys, Cambridge, United Kingdom, 2002, P.J. Gregson and S. Harris, eds., Trans Tech Publications, Aedermannsdorf, Switzerland, 2002, vols. 396–402, pp. 1567–72
2.
Zurück zum Zitat M.W. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, and C.J. Dawes: Friction Stir Butt Welding, GB Patent Application No. 9,125,978.8, Dec. 1991; U.S. Patent No. 5,460,317, Oct. 1995 M.W. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, and C.J. Dawes: Friction Stir Butt Welding, GB Patent Application No. 9,125,978.8, Dec. 1991; U.S. Patent No. 5,460,317, Oct. 1995
3.
Zurück zum Zitat R.S. Mishra, Z.Y. Ma: Mater. Sci. Eng. Rep., 2005, vol. R50, pp. 1–78CrossRef R.S. Mishra, Z.Y. Ma: Mater. Sci. Eng. Rep., 2005, vol. R50, pp. 1–78CrossRef
4.
Zurück zum Zitat M. Cabibbo, E. Meccia, E. Evangelista: Mater. Chem. Phys., 2003, vol. 81, pp. 289–92CrossRef M. Cabibbo, E. Meccia, E. Evangelista: Mater. Chem. Phys., 2003, vol. 81, pp. 289–92CrossRef
5.
Zurück zum Zitat G. Liu, L.E. Murr, C.-S. Niou, J.C. Mc Clure, F.R. Vega: Scripta Mater., 1997, vol. 37, pp. 355–61CrossRef G. Liu, L.E. Murr, C.-S. Niou, J.C. Mc Clure, F.R. Vega: Scripta Mater., 1997, vol. 37, pp. 355–61CrossRef
6.
Zurück zum Zitat Y.S. Sato, H. Kokawa: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 3023–31CrossRef Y.S. Sato, H. Kokawa: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 3023–31CrossRef
7.
Zurück zum Zitat M.A. Sutton, B. Yang, A.P Reynolds, R. Taylor: Mater. Sci. Eng., 2003, vol. A354, pp. 6–16 M.A. Sutton, B. Yang, A.P Reynolds, R. Taylor: Mater. Sci. Eng., 2003, vol. A354, pp. 6–16
8.
Zurück zum Zitat B. Yang, J. Yan, M.A. Sutton, A.P. Reynolds: Mater. Sci. Eng., 2004, vol. A 364, pp. 55–65 B. Yang, J. Yan, M.A. Sutton, A.P. Reynolds: Mater. Sci. Eng., 2004, vol. A 364, pp. 55–65
9.
Zurück zum Zitat C. Gallais: Ph.D. Thesis, INPG, Grenoble, France, 2005 C. Gallais: Ph.D. Thesis, INPG, Grenoble, France, 2005
10.
Zurück zum Zitat M. Gologanu, J.-B. Leblond, G. Perrin, and J. Devaux: in Continuum Micromechanics, Springer-Verlag, Berlin, 1997, pp. 61–106 M. Gologanu, J.-B. Leblond, G. Perrin, and J. Devaux: in Continuum Micromechanics, Springer-Verlag, Berlin, 1997, pp. 61–106
11.
Zurück zum Zitat T. Pardoen, J.W. Hutchinson: J. Mech. Phys. Solids, 2000, vol. 48, pp. 2467–512CrossRef T. Pardoen, J.W. Hutchinson: J. Mech. Phys. Solids, 2000, vol. 48, pp. 2467–512CrossRef
12.
Zurück zum Zitat T. Pardoen and J.W. Hutchinson: Acta Mater., 2003, vol. 51, pp. 133–48 T. Pardoen and J.W. Hutchinson: Acta Mater., 2003, vol. 51, pp. 133–48
13.
Zurück zum Zitat A.A. Benzerga, J. Besson, A. Pineau: Acta Mater., 2004, vol. 52, pp. 4639–50CrossRef A.A. Benzerga, J. Besson, A. Pineau: Acta Mater., 2004, vol. 52, pp. 4639–50CrossRef
14.
Zurück zum Zitat A. Asserin-Lebert, J. Besson, A.F. Gourgues: Mater. Sci. Eng., 2005, vol. A395, pp. 186–94 A. Asserin-Lebert, J. Besson, A.F. Gourgues: Mater. Sci. Eng., 2005, vol. A395, pp. 186–94
15.
Zurück zum Zitat D. Fabrègue and T. Pardoen: unpublished research D. Fabrègue and T. Pardoen: unpublished research
16.
Zurück zum Zitat A. Denquin, D. Allehaux, M.H. Campagnac, G. Lapasset: Weld. World, 2002, vol. 46, pp. 14–20 A. Denquin, D. Allehaux, M.H. Campagnac, G. Lapasset: Weld. World, 2002, vol. 46, pp. 14–20
17.
Zurück zum Zitat A. Denquin, D. Allehaux, M.H. Campagnac, G. Lapasset: Mater. Sci. Forum, 2002, vols. 396–402, pp. 1199–1204 A. Denquin, D. Allehaux, M.H. Campagnac, G. Lapasset: Mater. Sci. Forum, 2002, vols. 396–402, pp. 1199–1204
18.
Zurück zum Zitat A. Simar: Ph.D. Thesis, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, 2006 A. Simar: Ph.D. Thesis, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, 2006
19.
Zurück zum Zitat P.W. Bridgman: Studies in Large Plastic Flow and Fracture, McGraw-Hill, New-York, NY, 1952 P.W. Bridgman: Studies in Large Plastic Flow and Fracture, McGraw-Hill, New-York, NY, 1952
20.
Zurück zum Zitat D.M. Norris, B. Moran, J.K. Scudder, D.F. Quinones: J. Mech. Phys. Solids, 1978, vol. 26, pp. 1–19CrossRef D.M. Norris, B. Moran, J.K. Scudder, D.F. Quinones: J. Mech. Phys. Solids, 1978, vol. 26, pp. 1–19CrossRef
21.
Zurück zum Zitat T. Pardoen, F. Delannay: Metall. Mater. Trans. A, 1998, vol. A 29, pp. 1895–909CrossRef T. Pardoen, F. Delannay: Metall. Mater. Trans. A, 1998, vol. A 29, pp. 1895–909CrossRef
22.
Zurück zum Zitat Z.L. Zhang, M. Hauge, J. Ødegard, C. Thaulow: Int. J. Solids Struct., 1999, vol. 36, pp. 3497–3516CrossRef Z.L. Zhang, M. Hauge, J. Ødegard, C. Thaulow: Int. J. Solids Struct., 1999, vol. 36, pp. 3497–3516CrossRef
23.
Zurück zum Zitat Z.L. Zhang, J. Ødegard, O.P. Sovik, C. Thaulow: Int. J. Solids Struct., 2001, vol. 38, pp. 4489–4505CrossRef Z.L. Zhang, J. Ødegard, O.P. Sovik, C. Thaulow: Int. J. Solids Struct., 2001, vol. 38, pp. 4489–4505CrossRef
24.
Zurück zum Zitat D. Lassance, F. Scheyvaerts, T. Pardoen: Eng. Fract. Mech., 2006, vol. 73, pp. 1009–34CrossRef D. Lassance, F. Scheyvaerts, T. Pardoen: Eng. Fract. Mech., 2006, vol. 73, pp. 1009–34CrossRef
25.
Zurück zum Zitat D. Lassance, D. Fabrègue, F. Delannay, T. Pardoen: Prog. Mater. Sc., 2007, vol. 52, pp. 62–129CrossRef D. Lassance, D. Fabrègue, F. Delannay, T. Pardoen: Prog. Mater. Sc., 2007, vol. 52, pp. 62–129CrossRef
26.
Zurück zum Zitat M. Gologanu: Ph.D. Thesis, Université Paris VI, Paris, 1997 M. Gologanu: Ph.D. Thesis, Université Paris VI, Paris, 1997
27.
Zurück zum Zitat A.L. Gurson: J. Eng. Mater. Technol., 1977, vol. 99, pp. 2–15 A.L. Gurson: J. Eng. Mater. Technol., 1977, vol. 99, pp. 2–15
28.
Zurück zum Zitat P.F. Thomason: Ductile Fracture of Metals, Pergamon Press, Oxford, United Kingdom, 1990 P.F. Thomason: Ductile Fracture of Metals, Pergamon Press, Oxford, United Kingdom, 1990
29.
30.
Zurück zum Zitat G.T. Hahn, A.R. Rosenfield: Metal. Trans. A, 1975, vol. 6A, pp. 653–70 G.T. Hahn, A.R. Rosenfield: Metal. Trans. A, 1975, vol. 6A, pp. 653–70
31.
Zurück zum Zitat B. Marini, F. Mudry, A. Pineau: Eng. Fract. Mech., 1985, vol. 6, pp. 989–96CrossRef B. Marini, F. Mudry, A. Pineau: Eng. Fract. Mech., 1985, vol. 6, pp. 989–96CrossRef
32.
Zurück zum Zitat G. Perrin, J.-B. Leblond: Int. J. Plast., 1990, vol. 16, pp. 677–99CrossRef G. Perrin, J.-B. Leblond: Int. J. Plast., 1990, vol. 16, pp. 677–99CrossRef
33.
Zurück zum Zitat J. Faleskog, C.F. Shih: J. Phys. Mech. Solids, 1997, vol. 45, pp. 21–45CrossRef J. Faleskog, C.F. Shih: J. Phys. Mech. Solids, 1997, vol. 45, pp. 21–45CrossRef
34.
Zurück zum Zitat M.J. Haynes, R.P. Gangloff: Metall. Mater. Trans. A, 1997, vol. A28, pp. 1815–29CrossRef M.J. Haynes, R.P. Gangloff: Metall. Mater. Trans. A, 1997, vol. A28, pp. 1815–29CrossRef
35.
36.
Zurück zum Zitat G. Perrin, J.-B. Leblond: Int. J. Plasticity, 2000, vol. 16, pp. 91–120CrossRef G. Perrin, J.-B. Leblond: Int. J. Plasticity, 2000, vol. 16, pp. 91–120CrossRef
37.
Zurück zum Zitat K. Enakoutsa, J.-B. Leblond, and B. Audoly: Proc. 11th Int. Conf. on Fracture, Turin, Italy, Mar. 20–25, 2004, A. Carpinteri, ed., Department of Structural Engineering and Geotechnics of the Politecnico de Torino, CD-Rom, 2004 K. Enakoutsa, J.-B. Leblond, and B. Audoly: Proc. 11th Int. Conf. on Fracture, Turin, Italy, Mar. 20–25, 2004, A. Carpinteri, ed., Department of Structural Engineering and Geotechnics of the Politecnico de Torino, CD-Rom, 2004
38.
Zurück zum Zitat J.D. Eshelby: Proc. R. Soc. London, Ser. A, 1957, vol. 241, pp. 376–96CrossRef J.D. Eshelby: Proc. R. Soc. London, Ser. A, 1957, vol. 241, pp. 376–96CrossRef
39.
Zurück zum Zitat M. Berveiller, A. Zaoui: J. Mech. Phys. Solids, 1979, vol. 26, pp. 325–40CrossRef M. Berveiller, A. Zaoui: J. Mech. Phys. Solids, 1979, vol. 26, pp. 325–40CrossRef
40.
Zurück zum Zitat F.M. Beremin: in Three-Dimensional Constitutive Relations and Ductile Fracture, S. Nemat-Nasser, ed., North-Holland Publishing Company, Amsterdam, Netherlands, 1981, pp. 185–205 F.M. Beremin: in Three-Dimensional Constitutive Relations and Ductile Fracture, S. Nemat-Nasser, ed., North-Holland Publishing Company, Amsterdam, Netherlands, 1981, pp. 185–205
41.
Zurück zum Zitat J.C. Simo, T.J.R. Hughes: Computational Inelasticity, Springer-Verlag, New York, NY, 1998 J.C. Simo, T.J.R. Hughes: Computational Inelasticity, Springer-Verlag, New York, NY, 1998
42.
Zurück zum Zitat T. Pardoen, D. Dumont, A. Deschamps, Y. Brechet: J. Mech. Phys. Solids, 2003, vol. 51, pp. 637–65CrossRef T. Pardoen, D. Dumont, A. Deschamps, Y. Brechet: J. Mech. Phys. Solids, 2003, vol. 51, pp. 637–65CrossRef
43.
Zurück zum Zitat A. Pineau and T. Pardoen: in Comprehensive Structural Integrity, 2nd ed., Elsevier, New York, NY, 2006, vol. 2, in press A. Pineau and T. Pardoen: in Comprehensive Structural Integrity, 2nd ed., Elsevier, New York, NY, 2006, vol. 2, in press
44.
Zurück zum Zitat N.A. Fleck, J.W. Hutchinson, V. Tvergaard: J. Mech. Phys. Solids, 1989, vol. 37, pp. 515–40CrossRef N.A. Fleck, J.W. Hutchinson, V. Tvergaard: J. Mech. Phys. Solids, 1989, vol. 37, pp. 515–40CrossRef
45.
Zurück zum Zitat D. Steglich, W. Brocks: Comput. Mater. Sci., 1997, vol. 9, pp. 7–17CrossRef D. Steglich, W. Brocks: Comput. Mater. Sci., 1997, vol. 9, pp. 7–17CrossRef
46.
Zurück zum Zitat E. Maire, C. Bordreuil, L. Babout, J.C. Boyer: J. Mech. Phys. Solids, 2005, vol. 53, pp. 2411–34CrossRef E. Maire, C. Bordreuil, L. Babout, J.C. Boyer: J. Mech. Phys. Solids, 2005, vol. 53, pp. 2411–34CrossRef
Metadaten
Titel
Multiscale Analysis of the Strength and Ductility of AA 6056 Aluminum Friction Stir Welds
verfasst von
C. Gallais
A. Simar
D. Fabregue
A. Denquin
G. Lapasset
B. de Meester
Y. Brechet
T. Pardoen
Publikationsdatum
01.05.2007
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 5/2007
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-007-9121-x

Weitere Artikel der Ausgabe 5/2007

Metallurgical and Materials Transactions A 5/2007 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.