Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 13/2011

01.12.2011

Crack Propagation During Sustained-Load Cracking of Al-Zn-Mg-Cu Aluminum Alloys Exposed to Moist Air or Distilled Water

verfasst von: N. J. Henry Holroyd, G. M. Scamans

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 13/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Intergranular sustained-load cracking of Al-Zn-Mg-Cu (AA7xxx series) aluminum alloys exposed to moist air or distilled water at temperatures in the range 283 K to 353 K (10 °C to 80 °C) has been reviewed in detail, paying particular attention to local processes occurring in the crack-tip region during crack propagation. Distinct crack-arrest markings formed on intergranular fracture faces generated under fixed-displacement loading conditions are not generated under monotonic rising-load conditions, but can form under cyclic-loading conditions if loading frequencies are sufficiently low. The observed crack-arrest markings are insensitive to applied stress intensity factor, alloy copper content and temper, but are temperature sensitive, increasing from ~150 nm at room temperature to ~400 nm at 313 K (40 °C). A re-evaluation of published data reveals the apparent activation energy, E a for crack propagation in Al-Zn-Mg(-Cu) alloys is consistently ~35 kJ/mol for temperatures above ~313 K (40 °C), independent of copper content or the applied stress intensity factor, unless the alloy contains a significant volume fraction of S-phase, Al2CuMg where E a is ~80 kJ/mol. For temperatures below ~313 K (40 °C) E a is independent of copper content for stress intensity factors below ~14 MNm−3/2, with a value ~80 kJ/mol but is sensitive to copper content for stress intensity factors above ~14 MNm−3/2, with E a , ranging from ~35 kJ/mol for copper-free alloys to ~80 kJ/mol for alloys containing 1.5 pct Cu. The apparent activation energy for intergranular sustained-load crack initiation is consistently ~110 kJ/mol for both notched and un-notched samples. Mechanistic implications are discussed and processes controlling crack growth, as a function of temperature, alloy copper content, and loading conditions are proposed that are consistent with the calculated apparent activation energies and known characteristics of intergranular sustained-load cracking. It is suggested, depending on the circumstances, that intergranular crack propagation in humid air and distilled water can be enhanced by the generation of aluminum hydride, AlH3, ahead of a propagating crack and/or its decomposition after formation within the confines of the nanoscale volumes available after increments of crack growth, defined by the crack arrest markings on intergranular fracture surfaces.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.O. Speidel: Metall. Trans. A, 1975, vol. 6A, pp. 631–51. M.O. Speidel: Metall. Trans. A, 1975, vol. 6A, pp. 631–51.
2.
Zurück zum Zitat M.O. Speidel: in The Theory of Stress Corrosion Cracking in Alloys, J.C. Scully, ed., NATO, Brussels, Belgium, 1971, pp. 289–344. M.O. Speidel: in The Theory of Stress Corrosion Cracking in Alloys, J.C. Scully, ed., NATO, Brussels, Belgium, 1971, pp. 289–344.
3.
Zurück zum Zitat N. Behnood, H. Cai, J.T. Evans, and N.J.H. Holroyd: Mater. Sci. Eng., 1989, vol. A119, pp. 23–32. N. Behnood, H. Cai, J.T. Evans, and N.J.H. Holroyd: Mater. Sci. Eng., 1989, vol. A119, pp. 23–32.
4.
Zurück zum Zitat G.A. Young and J.R. Scully: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 101–15.CrossRef G.A. Young and J.R. Scully: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 101–15.CrossRef
5.
Zurück zum Zitat S. Knight: Ph.D. Thesis, Monash University, Melbourne, 2008. S. Knight: Ph.D. Thesis, Monash University, Melbourne, 2008.
6.
Zurück zum Zitat W. Thomson (Lord Kelvin): Philos. Mag., 1871, vol. 42, pp. 443–52. W. Thomson (Lord Kelvin): Philos. Mag., 1871, vol. 42, pp. 443–52.
7.
Zurück zum Zitat R.H. Dean and J.W. Hutchinson: Fracture Mechanics: Twelfth Conf., ASTM STP-700, ASTM, Philadelphia, PA, 1980, pp. 383–405. R.H. Dean and J.W. Hutchinson: Fracture Mechanics: Twelfth Conf., ASTM STP-700, ASTM, Philadelphia, PA, 1980, pp. 383–405.
8.
Zurück zum Zitat K. Komai, K. Minoshima, and T. Miyawaki: J. Phys. IV, Coll. C6, suppl. J. Phys. III, 1996, vol. 6, pp. 413–20. K. Komai, K. Minoshima, and T. Miyawaki: J. Phys. IV, Coll. C6, suppl. J. Phys. III, 1996, vol. 6, pp. 413–20.
9.
Zurück zum Zitat D.L. Davidson and J. Lankford: Fat. Eng. Struct., 1983, vol. 6 (3), pp. 241–56.CrossRef D.L. Davidson and J. Lankford: Fat. Eng. Struct., 1983, vol. 6 (3), pp. 241–56.CrossRef
10.
Zurück zum Zitat M. Ciccotti, M. George, V. Ranieri, L. Wondraczek, and C. Marliere: J. Non-Cryst. Solids, 2008, vol. 354, pp. 564–68.CrossRef M. Ciccotti, M. George, V. Ranieri, L. Wondraczek, and C. Marliere: J. Non-Cryst. Solids, 2008, vol. 354, pp. 564–68.CrossRef
11.
Zurück zum Zitat A. Grimaldi, M. George, G. Pallares, C. Marliere, and M. Ciccotti: Physical Review Letters, Apr. 25, 2008, PRL 100, 165505, The American Physical Society, College Park, MD. A. Grimaldi, M. George, G. Pallares, C. Marliere, and M. Ciccotti: Physical Review Letters, Apr. 25, 2008, PRL 100, 165505, The American Physical Society, College Park, MD.
12.
Zurück zum Zitat H.A. Al-Abadleh and V.H. Grassian: Langmuir, 2003, vol. 19, pp. 341–47.CrossRef H.A. Al-Abadleh and V.H. Grassian: Langmuir, 2003, vol. 19, pp. 341–47.CrossRef
13.
Zurück zum Zitat K.C. Hass, W.F. Schneider, A. Curioni, and W. Andreoni: Science, 1998, vol. 282, pp. 265–68.CrossRef K.C. Hass, W.F. Schneider, A. Curioni, and W. Andreoni: Science, 1998, vol. 282, pp. 265–68.CrossRef
14.
Zurück zum Zitat R.P. Wei: in Hydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, eds., AIME, Warrendale, PA, 1981, pp. 677–89. R.P. Wei: in Hydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, eds., AIME, Warrendale, PA, 1981, pp. 677–89.
15.
16.
Zurück zum Zitat M. Watanabe, X. Jiang, and R. Saito: U.S. Patent 7,235,226, June 26, 2007. M. Watanabe, X. Jiang, and R. Saito: U.S. Patent 7,235,226, June 26, 2007.
17.
Zurück zum Zitat S.W. Ciaraldi, J.L. Nelson, R.A. Yeske, and E.N. Pugh: in Hydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, eds., AIME, Warrendale, PA, 1981, pp. 437–47. S.W. Ciaraldi, J.L. Nelson, R.A. Yeske, and E.N. Pugh: in Hydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, eds., AIME, Warrendale, PA, 1981, pp. 437–47.
18.
Zurück zum Zitat M.V. Hyatt: Corrosion, 1970, vol. 26, pp. 487–503. M.V. Hyatt: Corrosion, 1970, vol. 26, pp. 487–503.
19.
Zurück zum Zitat R. Hermann and N.J.H. Holroyd: Mater. Sci. Technol., 1986, vol. 2, pp. 1238–44. R. Hermann and N.J.H. Holroyd: Mater. Sci. Technol., 1986, vol. 2, pp. 1238–44.
21.
Zurück zum Zitat M.O. Speidel and M.V. Hyatt: Advanced Corrosion Science Technology, 1972, vol. 2, Plenum Press, New York, NY, pp. 115–335. M.O. Speidel and M.V. Hyatt: Advanced Corrosion Science Technology, 1972, vol. 2, Plenum Press, New York, NY, pp. 115–335.
22.
Zurück zum Zitat S. Pyun, M. Hong, and H. Kim: Br. Corros. J., 1991, vol. 26, pp. 260–64 S. Pyun, M. Hong, and H. Kim: Br. Corros. J., 1991, vol. 26, pp. 260–64
23.
Zurück zum Zitat G.M. Scamans: Aluminium, 1982, vol. 58, pp. 332–34. G.M. Scamans: Aluminium, 1982, vol. 58, pp. 332–34.
24.
Zurück zum Zitat R.G. Song, M.K. Tseng, B.J. Zhang, J. Lui, Z.H. Jin, and K.S. Shin: Acta Mater., 1996, vol. 44 (8), pp. 3241–48. R.G. Song, M.K. Tseng, B.J. Zhang, J. Lui, Z.H. Jin, and K.S. Shin: Acta Mater., 1996, vol. 44 (8), pp. 3241–48.
25.
Zurück zum Zitat R.G. Song, W. Dietzel, B.J. Zhang, W.J. Liu, M.K. Tseng, and A. Atrens: Acta Mater., 2004, vol. 52, pp. 4727–43.CrossRef R.G. Song, W. Dietzel, B.J. Zhang, W.J. Liu, M.K. Tseng, and A. Atrens: Acta Mater., 2004, vol. 52, pp. 4727–43.CrossRef
26.
Zurück zum Zitat G.M. Scamans, N.J.H. Holroyd, and C.D.S. Tuck: Corros. Sci., 1987, vol. 27, pp. 329–47.CrossRef G.M. Scamans, N.J.H. Holroyd, and C.D.S. Tuck: Corros. Sci., 1987, vol. 27, pp. 329–47.CrossRef
27.
Zurück zum Zitat S. Bovard: Master’s Thesis, University of Pittsburgh, Pittsburgh, PA, 2005. S. Bovard: Master’s Thesis, University of Pittsburgh, Pittsburgh, PA, 2005.
28.
29.
Zurück zum Zitat P. Martin, J.I. Dickson, and J.P. Bailon: Mater. Sci. Eng., 1985, vol. 69, pp. L9–L13.CrossRef P. Martin, J.I. Dickson, and J.P. Bailon: Mater. Sci. Eng., 1985, vol. 69, pp. L9–L13.CrossRef
30.
Zurück zum Zitat J. McEvily, J.B. Clark, and A.P. Bond: Trans. ASM, 1967, vol. 60, pp. 661–71. J. McEvily, J.B. Clark, and A.P. Bond: Trans. ASM, 1967, vol. 60, pp. 661–71.
31.
32.
Zurück zum Zitat G.M. Scamans: in Hydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, eds., AIME, Warrendale, PA, 1981, pp. 467–75. G.M. Scamans: in Hydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, eds., AIME, Warrendale, PA, 1981, pp. 467–75.
33.
Zurück zum Zitat G.M. Scamans: Metall. Trans. A, 1980, vol. 11A, pp. 846–50. G.M. Scamans: Metall. Trans. A, 1980, vol. 11A, pp. 846–50.
35.
Zurück zum Zitat R.C. Dorward and K.R. Hasse: Final NASA Report Contract No. NAS8-30890, Oct. 1976. R.C. Dorward and K.R. Hasse: Final NASA Report Contract No. NAS8-30890, Oct. 1976.
36.
Zurück zum Zitat N.J.H. Holroyd, G.M. Scamans, and R. Hermann: in Embrittlement by the Localized Environment , R.P. Gangloff, ed., AIME, Warrendale, PA, 1984, pp. 327–47. N.J.H. Holroyd, G.M. Scamans, and R. Hermann: in Embrittlement by the Localized Environment , R.P. Gangloff, ed., AIME, Warrendale, PA, 1984, pp. 327–47.
37.
Zurück zum Zitat Wu-Yang Chu, Y.B. Wang, and C.M. Hsiao: Corrosion, 1982, vol. 38, pp. 561–70. Wu-Yang Chu, Y.B. Wang, and C.M. Hsiao: Corrosion, 1982, vol. 38, pp. 561–70.
38.
Zurück zum Zitat M.S. Domack: in Corrosion Cracking, V.S. Groel, ed., ASM, Metals Park, OH, 1986, pp. 191–96. M.S. Domack: in Corrosion Cracking, V.S. Groel, ed., ASM, Metals Park, OH, 1986, pp. 191–96.
39.
Zurück zum Zitat A.H. Le, B.F. Brown, and R.T. Foley: Corrosion, 1980, vol. 36, pp. 673–79. A.H. Le, B.F. Brown, and R.T. Foley: Corrosion, 1980, vol. 36, pp. 673–79.
40.
Zurück zum Zitat C.J. Newton and N.J.H. Holroyd: in New Methods for Corrosion Testing Aluminum Alloys, ASTM-STP 1134, V.S. Agarwala and G.M. Ugiansky, eds., 1992, pp. 153–79. C.J. Newton and N.J.H. Holroyd: in New Methods for Corrosion Testing Aluminum Alloys, ASTM-STP 1134, V.S. Agarwala and G.M. Ugiansky, eds., 1992, pp. 153–79.
41.
42.
Zurück zum Zitat M.S. Domack: in Environmentally Assisted Cracking: Science and Engineering, ASTM-STP 1049, W.B. Lisagor, T.W. Crooker, and B.N. Leis, ASTM, Philadelphia, PA, 1990, pp. 391–409. M.S. Domack: in Environmentally Assisted Cracking: Science and Engineering, ASTM-STP 1049, W.B. Lisagor, T.W. Crooker, and B.N. Leis, ASTM, Philadelphia, PA, 1990, pp. 391–409.
43.
Zurück zum Zitat K. Welpmann, A. Gysler, and G. Lutjering: Z. Metallkd., 1980, vol. 71, pp. 7–14. K. Welpmann, A. Gysler, and G. Lutjering: Z. Metallkd., 1980, vol. 71, pp. 7–14.
44.
Zurück zum Zitat N.J.H. Holroyd and D. Hardie: in Hydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, eds., AIME, Warrendale, PA, 1980, pp. 449–57. N.J.H. Holroyd and D. Hardie: in Hydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, eds., AIME, Warrendale, PA, 1980, pp. 449–57.
45.
Zurück zum Zitat N.J.H. Holroyd and D. Hardie: Corros. Sci., 1981, vol. 21, pp. 129-44.CrossRef N.J.H. Holroyd and D. Hardie: Corros. Sci., 1981, vol. 21, pp. 129-44.CrossRef
46.
Zurück zum Zitat G.M. Scamans, R. Alani, and P.R. Swann: Corros. Sci., 1976, vol. 16, pp. 443–59.CrossRef G.M. Scamans, R. Alani, and P.R. Swann: Corros. Sci., 1976, vol. 16, pp. 443–59.CrossRef
47.
Zurück zum Zitat D. Hardie, N.J.H. Holroyd, and R.N. Parkins: Met. Sci., 1979, vol. 13, pp. 603–10. D. Hardie, N.J.H. Holroyd, and R.N. Parkins: Met. Sci., 1979, vol. 13, pp. 603–10.
48.
Zurück zum Zitat M. Abe, K Ouchi, K Asano, and A. Fujiwara: J. Jpn. Inst. Met., 1981, vol. 45, pp. 1161–69. M. Abe, K Ouchi, K Asano, and A. Fujiwara: J. Jpn. Inst. Met., 1981, vol. 45, pp. 1161–69.
49.
Zurück zum Zitat R.S. Pathania and D. Tromans: Metall. Trans. A, 1981, vol. 12A, pp. 607–12. R.S. Pathania and D. Tromans: Metall. Trans. A, 1981, vol. 12A, pp. 607–12.
50.
Zurück zum Zitat M.O. Speidel: in Hydrogen in Metals, A.W. Thompson, ed., ASM, Metals Park, OH, 1974, pp. 249–76. M.O. Speidel: in Hydrogen in Metals, A.W. Thompson, ed., ASM, Metals Park, OH, 1974, pp. 249–76.
51.
Zurück zum Zitat S. Lee, S. Pyun, and Y. Chun: Metall. Trans. A, 1991, vol. 22A, pp. 2407–14. S. Lee, S. Pyun, and Y. Chun: Metall. Trans. A, 1991, vol. 22A, pp. 2407–14.
52.
53.
Zurück zum Zitat H.F. de Jong: Aluminium, 1981, vol. 58, pp. 526–31. H.F. de Jong: Aluminium, 1981, vol. 58, pp. 526–31.
54.
Zurück zum Zitat D.G. Anltenpohl: Corrosion, 1962, vol. 18, pp. 143–53. D.G. Anltenpohl: Corrosion, 1962, vol. 18, pp. 143–53.
55.
Zurück zum Zitat R. Rungta, R.R. Ahrens, and M. Zu: U.S. Patent 5,601,663, Feb. 11, 1997. R. Rungta, R.R. Ahrens, and M. Zu: U.S. Patent 5,601,663, Feb. 11, 1997.
56.
Zurück zum Zitat N.J.H. Holroyd: in Environmental Effects on Engineered Materials, Russell H. Jones, ed., Marcel Dekker, Inc., New York, NY, 2000, pp. 173–251. N.J.H. Holroyd: in Environmental Effects on Engineered Materials, Russell H. Jones, ed., Marcel Dekker, Inc., New York, NY, 2000, pp. 173–251.
57.
58.
Zurück zum Zitat G. Kostikos, J.M. Sutcliffe, and N.J.H. Holroyd: Br. Corros. J., 1995, vol. 30, pp. 302–08. G. Kostikos, J.M. Sutcliffe, and N.J.H. Holroyd: Br. Corros. J., 1995, vol. 30, pp. 302–08.
59.
Zurück zum Zitat N.J.H. Holroyd and D. Hardie: Corros. Sci., 1983, vol. 23, pp. 527–46.CrossRef N.J.H. Holroyd and D. Hardie: Corros. Sci., 1983, vol. 23, pp. 527–46.CrossRef
60.
Zurück zum Zitat R. Guest and A.R. Troiano: in L’Hydrogene dans les Metaux, Editions Science et Industrie, Paris, France, 1972, pp. 427–32. R. Guest and A.R. Troiano: in L’Hydrogene dans les Metaux, Editions Science et Industrie, Paris, France, 1972, pp. 427–32.
61.
Zurück zum Zitat R.E. Ricker and D.J. Duquette: Metall. Trans. A, 1988, vol. 19A, pp. 1775–83. R.E. Ricker and D.J. Duquette: Metall. Trans. A, 1988, vol. 19A, pp. 1775–83.
62.
Zurück zum Zitat K.R. Cooper, L.M. Young, R.P. Gangloff, and R.G. Kelly: Mater. Sci. Forum, 2000, vols. 331–337, pp. 1625–34.CrossRef K.R. Cooper, L.M. Young, R.P. Gangloff, and R.G. Kelly: Mater. Sci. Forum, 2000, vols. 331–337, pp. 1625–34.CrossRef
63.
64.
Zurück zum Zitat L.M. Young and R.P. Gangloff: in Advances in Metallurgy of Aluminum Alloys, Murat Tiryakioglu, ed., ASM International, Metals Park, OH, 2001, pp. 135–40. L.M. Young and R.P. Gangloff: in Advances in Metallurgy of Aluminum Alloys, Murat Tiryakioglu, ed., ASM International, Metals Park, OH, 2001, pp. 135–40.
65.
Zurück zum Zitat F.P. Ford: Corrosion, 1979, vol. 35, pp. 281–89. F.P. Ford: Corrosion, 1979, vol. 35, pp. 281–89.
66.
Zurück zum Zitat N. Lampeas and P.G. Koutoukos: Corros. Sci., 1994, vol. 36, pp. 1011–25.CrossRef N. Lampeas and P.G. Koutoukos: Corros. Sci., 1994, vol. 36, pp. 1011–25.CrossRef
67.
Zurück zum Zitat M. Metikos-Hukovic, R. Babic, Z. Grubac, and S. Brinic: J. Appl. Chem., 1994, vol. 24, pp. 325–31. M. Metikos-Hukovic, R. Babic, Z. Grubac, and S. Brinic: J. Appl. Chem., 1994, vol. 24, pp. 325–31.
68.
Zurück zum Zitat M. Metikos-Hukovic, R. Babic, and Z. Grubac: J. Appl. Chem., 1998, vol. 28, pp. 433–39. M. Metikos-Hukovic, R. Babic, and Z. Grubac: J. Appl. Chem., 1998, vol. 28, pp. 433–39.
69.
Zurück zum Zitat Y.A. Aleksandrov, E.I. Tsyganova, and A.L. Pisarev: Russ. J. Gen. Chem., 2003, vol. 73 (5), pp. 729–34.CrossRef Y.A. Aleksandrov, E.I. Tsyganova, and A.L. Pisarev: Russ. J. Gen. Chem., 2003, vol. 73 (5), pp. 729–34.CrossRef
70.
Zurück zum Zitat A.Z. Zhuk, A.E. Sheindlin, B.V. Kleymenov, E.I. Shkolnikov, and M.Y. Lopatin: J. Power Sources, 2006, vol. 157, pp. 921–26.CrossRef A.Z. Zhuk, A.E. Sheindlin, B.V. Kleymenov, E.I. Shkolnikov, and M.Y. Lopatin: J. Power Sources, 2006, vol. 157, pp. 921–26.CrossRef
71.
Zurück zum Zitat T. Hiraki, M. Takeuchi, M. Hisa, and T. Akiyama: Mater. Trans., 2005, vol. 46 (5), pp. 1052–57.CrossRef T. Hiraki, M. Takeuchi, M. Hisa, and T. Akiyama: Mater. Trans., 2005, vol. 46 (5), pp. 1052–57.CrossRef
72.
Zurück zum Zitat L.C. Rowe and M.S. Walker: Corrosion, 1961, vol. 17, pp. 353t–356t. L.C. Rowe and M.S. Walker: Corrosion, 1961, vol. 17, pp. 353t–356t.
73.
Zurück zum Zitat B. Bavarian, L. Reiner, H. Youssefpour, and I. Juraga: in Corrosion, NACE, Houston, TX, 2005. B. Bavarian, L. Reiner, H. Youssefpour, and I. Juraga: in Corrosion, NACE, Houston, TX, 2005.
74.
Zurück zum Zitat T. Ishikawa and R.B. McLellan: Acta Metall., 1986, vol. 34, pp. 1091–95.CrossRef T. Ishikawa and R.B. McLellan: Acta Metall., 1986, vol. 34, pp. 1091–95.CrossRef
75.
Zurück zum Zitat G.A. Young and J.R. Scully: Acta Mater., 1998, vol. 18, pp. 6337–49.CrossRef G.A. Young and J.R. Scully: Acta Mater., 1998, vol. 18, pp. 6337–49.CrossRef
76.
Zurück zum Zitat J.R. Scully, G.A. Young, and S.W. Smith: Mater. Sci. Forum, 2000, vols. 331–337, pp. 1583–1600.CrossRef J.R. Scully, G.A. Young, and S.W. Smith: Mater. Sci. Forum, 2000, vols. 331–337, pp. 1583–1600.CrossRef
77.
Zurück zum Zitat O.D. Sherby, J.L. Lytonn, and J.E. Dorn: Acta Metall., 1957, vol. 5, pp. 219–27.CrossRef O.D. Sherby, J.L. Lytonn, and J.E. Dorn: Acta Metall., 1957, vol. 5, pp. 219–27.CrossRef
78.
Zurück zum Zitat A.L. Goodman, E.T. Barnard, and V.H. Grassian: J. Phys. Chem. A, 2001, vol. 105, pp. 6443–75.CrossRef A.L. Goodman, E.T. Barnard, and V.H. Grassian: J. Phys. Chem. A, 2001, vol. 105, pp. 6443–75.CrossRef
79.
Zurück zum Zitat J.P. Nordin, D.J. Sullivan, B.L. Phillips, and W.H. Casey: Inorg. Chem., 1998, vol. 37, pp. 4760–63.CrossRef J.P. Nordin, D.J. Sullivan, B.L. Phillips, and W.H. Casey: Inorg. Chem., 1998, vol. 37, pp. 4760–63.CrossRef
80.
Zurück zum Zitat D.J. Sullivan, J.P. Nordin, B.L. Phillips, and W.H. Casey: Geochimica Cosmochimica Acta, 1999, vol. 63, pp. 1471–80.CrossRef D.J. Sullivan, J.P. Nordin, B.L. Phillips, and W.H. Casey: Geochimica Cosmochimica Acta, 1999, vol. 63, pp. 1471–80.CrossRef
81.
Zurück zum Zitat N.J.H. Holroyd: in Environment-Induced Cracking of Metals, R.P. Gangloff and M.B. Ives, eds., NACE, Houston, TX, 1990, pp. 311–45. N.J.H. Holroyd: in Environment-Induced Cracking of Metals, R.P. Gangloff and M.B. Ives, eds., NACE, Houston, TX, 1990, pp. 311–45.
82.
Zurück zum Zitat T. Magnin, A. Chambreuil, and B. Bayle: Acta Mater., 1996, vol. 44, pp. 1457–70.CrossRef T. Magnin, A. Chambreuil, and B. Bayle: Acta Mater., 1996, vol. 44, pp. 1457–70.CrossRef
83.
Zurück zum Zitat J.J. Lewandowski, V. Kohler, and N.J.H. Holroyd: Mater. Sci. Eng., 1978, vol. 96, pp. 185–95. J.J. Lewandowski, V. Kohler, and N.J.H. Holroyd: Mater. Sci. Eng., 1978, vol. 96, pp. 185–95.
84.
Zurück zum Zitat P. Singh, J.T. Evans, and N.J.H. Holroyd: Mater. Sci. Eng., 1992, vol. A157, pp. 1–8. P. Singh, J.T. Evans, and N.J.H. Holroyd: Mater. Sci. Eng., 1992, vol. A157, pp. 1–8.
85.
Zurück zum Zitat V. Rosenband and A. Gany: Int. J. Hydrogen Energy, 2010, vol. 35, pp. 10898–10904.CrossRef V. Rosenband and A. Gany: Int. J. Hydrogen Energy, 2010, vol. 35, pp. 10898–10904.CrossRef
86.
Zurück zum Zitat E. Czech and T. Troczynski: Int. J. Hydrogen Energy, 2010, vol. 35, pp. 1029–37.CrossRef E. Czech and T. Troczynski: Int. J. Hydrogen Energy, 2010, vol. 35, pp. 1029–37.CrossRef
87.
Zurück zum Zitat R.G. Buchheit, L.P. Montes, M.A. Martinez, J. Michael, and P.F. Hlava: J. Electrochem. Soc., 1999, vol. 146, pp. 4424–28.CrossRef R.G. Buchheit, L.P. Montes, M.A. Martinez, J. Michael, and P.F. Hlava: J. Electrochem. Soc., 1999, vol. 146, pp. 4424–28.CrossRef
88.
Zurück zum Zitat R.G. Buchheit, M.A. Martinez, and L.P. Montes: J. Electrochem. Soc., 2000, vol. 147, pp. 119–24.CrossRef R.G. Buchheit, M.A. Martinez, and L.P. Montes: J. Electrochem. Soc., 2000, vol. 147, pp. 119–24.CrossRef
89.
Zurück zum Zitat F.C. Porter and S.E. Hadden: J. Appl. Chem., 1953, vol. 3, pp. 385–409. F.C. Porter and S.E. Hadden: J. Appl. Chem., 1953, vol. 3, pp. 385–409.
90.
Zurück zum Zitat H.P. Goddard: in Corrosion of Light Metals, John Wiley, New York, 1967, pp. 65–67. H.P. Goddard: in Corrosion of Light Metals, John Wiley, New York, 1967, pp. 65–67.
91.
Zurück zum Zitat R.S. Allwitt: in Oxide and Oxide Films, J.W. Diggle, ed., Marcel Decker, New York, NY, 1976, pp. 169–254. R.S. Allwitt: in Oxide and Oxide Films, J.W. Diggle, ed., Marcel Decker, New York, NY, 1976, pp. 169–254.
92.
Zurück zum Zitat R.S. Allwitt and L.C. Archibald: Corros. Sci., 1973, vol. 13, pp. 687–88.CrossRef R.S. Allwitt and L.C. Archibald: Corros. Sci., 1973, vol. 13, pp. 687–88.CrossRef
93.
Zurück zum Zitat G.M. Scamans and A.S. Rehal: J. Mater. Sci., 1979, vol. 14, pp. 2459–70.CrossRef G.M. Scamans and A.S. Rehal: J. Mater. Sci., 1979, vol. 14, pp. 2459–70.CrossRef
94.
Zurück zum Zitat W. Vedder and D.A. Vermilyea: Trans. Faraday Soc., 1969, vol. 65, pp. 561–84.CrossRef W. Vedder and D.A. Vermilyea: Trans. Faraday Soc., 1969, vol. 65, pp. 561–84.CrossRef
95.
96.
97.
Zurück zum Zitat R.S. Alwitt and W.J. Barnard: J. Electrochem. Soc., 1974, vol. 121, pp. 1019–21.CrossRef R.S. Alwitt and W.J. Barnard: J. Electrochem. Soc., 1974, vol. 121, pp. 1019–21.CrossRef
98.
Zurück zum Zitat T.H. Sanders and E.A. Starke: Metall. Trans. A, 1976, vol. 7A, pp. 1407–18. T.H. Sanders and E.A. Starke: Metall. Trans. A, 1976, vol. 7A, pp. 1407–18.
99.
100.
Zurück zum Zitat F.S. Lin and E.A. Starke: Mater. Sci. Eng., 1979, vol. 39, pp. 27–41.CrossRef F.S. Lin and E.A. Starke: Mater. Sci. Eng., 1979, vol. 39, pp. 27–41.CrossRef
101.
Zurück zum Zitat B. Sarkar, M. Marek, and E.A. Starke: Metall. Trans. A, 1981, vol. 12A, pp. 1939–43. B. Sarkar, M. Marek, and E.A. Starke: Metall. Trans. A, 1981, vol. 12A, pp. 1939–43.
102.
Zurück zum Zitat S.P. Knight, N. Birbilis, B.C. Muddle, A.R. Trueman, and S P Lynch: Corros. Sci., 2010, vol. 52, pp. 4073–80.CrossRef S.P. Knight, N. Birbilis, B.C. Muddle, A.R. Trueman, and S P Lynch: Corros. Sci., 2010, vol. 52, pp. 4073–80.CrossRef
103.
Zurück zum Zitat Q. Ming and G.S. Frankel: J. Electrochem. Soc., 2004, vol. 151, pp. B271–B283.CrossRef Q. Ming and G.S. Frankel: J. Electrochem. Soc., 2004, vol. 151, pp. B271–B283.CrossRef
104.
Zurück zum Zitat N.J.H. Holroyd, G.M. Scamans, and R. Hermann: in Corrosion Chemistry within Pits, Crevices and Cracks, A. Turnbull, ed., HMSO, London, 1987, pp. 495–510. N.J.H. Holroyd, G.M. Scamans, and R. Hermann: in Corrosion Chemistry within Pits, Crevices and Cracks, A. Turnbull, ed., HMSO, London, 1987, pp. 495–510.
105.
Zurück zum Zitat B.V. Rao: Metall. Trans. A, 1981, vol. 12A, pp. 1356–59. B.V. Rao: Metall. Trans. A, 1981, vol. 12A, pp. 1356–59.
106.
Zurück zum Zitat W. Hepples, M.R. Jarrett, J.S. Crompton, and N.J.H. Holroyd: in Environment-Induced Cracking of Metals, R.P. Gangloff and M.B. Ives, eds., NACE, Houston, TX, 1990, pp. 383–87. W. Hepples, M.R. Jarrett, J.S. Crompton, and N.J.H. Holroyd: in Environment-Induced Cracking of Metals, R.P. Gangloff and M.B. Ives, eds., NACE, Houston, TX, 1990, pp. 383–87.
107.
Zurück zum Zitat J.S. Crompton, W. Hepples, M.R. Jarrett, N.J.H. Holroyd, and J. Titchmarsh: Proc. 10th Risø Int. Symp. on Metallurgy and Materials Science: Materials Architecture, J.B. Blide-Sorensen, N. Hansen, D.J. Jensen, T. Leffers, H. Liholt, and O.B. Pedersen, eds., Risø National Laboratory, Roskilde, Denmark, 1989. J.S. Crompton, W. Hepples, M.R. Jarrett, N.J.H. Holroyd, and J. Titchmarsh: Proc. 10th Risø Int. Symp. on Metallurgy and Materials Science: Materials Architecture, J.B. Blide-Sorensen, N. Hansen, D.J. Jensen, T. Leffers, H. Liholt, and O.B. Pedersen, eds., Risø National Laboratory, Roskilde, Denmark, 1989.
Metadaten
Titel
Crack Propagation During Sustained-Load Cracking of Al-Zn-Mg-Cu Aluminum Alloys Exposed to Moist Air or Distilled Water
verfasst von
N. J. Henry Holroyd
G. M. Scamans
Publikationsdatum
01.12.2011
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 13/2011
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-011-0793-x

Weitere Artikel der Ausgabe 13/2011

Metallurgical and Materials Transactions A 13/2011 Zur Ausgabe

Symposium: Modeling, Simulation, and Theory of Nanomechanical Materials Behavior

On Homogeneous Nucleation of Dislocation Loops in Nanocrystalline Materials

Symposium: Modeling, Simulation, and Theory of Nanomechanical Materials Behavior

Effects of Vacancies on the Onset of Plasticity in Metals—An Atomistic Simulation Study

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.