Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 4/2016

01.02.2016

Ultra-High-Strength Interstitial-Free Steel Processed by Equal-Channel Angular Pressing at Large Equivalent Strain

verfasst von: Deepa Verma, N. K. Mukhopadhyay, G. V. S. Sastry, R. Manna

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The billets of interstitial-free (IF) steel are deformed by equal-channel angular pressing (ECAP) at 298 K (25 °C) adopting the route BC up to an equivalent strain (ε vm) of 24. The evolution of microstructures and their effects on the mechanical properties are examined. The microstructural refinement involves the elongation of grains, the subdivision of grains to the bands with high dislocation density, and the splitting of bands into the cell blocks and then cell blocks into the cells. The widths of the bands and the size of cells decrease with strain. The degree of reduction in the grain size is highest at the low strain level. However, most of the boundaries at this stage are of low-angle boundaries (at ε vm = 3). Thereafter, the misorientation angle increases by progressive lattice rotation with strain. The coarse bands transform step by step from the lamellar structure to the ribbon-shaped grains and finally to the near-equiaxed grain structures with the subgrains of a saturated low-angle grain boundary fraction of 0.34 at very large strain >15. The as-received coarse-grained microstructure (grain size of 57.6 ± 21 µm) has been refined to 257 ± 48 nm at an equivalent strain of 24. The strength increases considerably up to ε vm = 3 due to grain refinement and high dislocation density. However, the strengthening at later stages is mainly due to the increase in misorientation angle and refinement. Initial yield strength of 227 MPa is increased to a record value of 895 MPa on straining up to ε vm = 24 at 298 K (25 °C). Uniform elongation decreases drastically at low equivalent strain but it regains marginally later. The ECAPed sample fails by a ductile fracture at ε vm = 0.6 to 6 but by a mixed mode of ductile–brittle fracture at larger strain of 9 to 24.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat 2. G. Purcek, O. Saray, Ibrahim Karaman and H. J. Maier, Metall. Mater. Trans. A, 2012, vol. 43, pp. 1884-94.CrossRef 2. G. Purcek, O. Saray, Ibrahim Karaman and H. J. Maier, Metall. Mater. Trans. A, 2012, vol. 43, pp. 1884-94.CrossRef
3.
Zurück zum Zitat 3. R. Song, D. Ponge, D. Raabe, J.G. Speer and D.K. Matlock, Mater. Sci. Eng. A 2006, vol. 441, pp. 1–17.CrossRef 3. R. Song, D. Ponge, D. Raabe, J.G. Speer and D.K. Matlock, Mater. Sci. Eng. A 2006, vol. 441, pp. 1–17.CrossRef
4.
Zurück zum Zitat 4. R.Z. Valiev and T.G. Langdon, Prog. Mater. Sci. 2006, vol. 51, pp. 881–981.CrossRef 4. R.Z. Valiev and T.G. Langdon, Prog. Mater. Sci. 2006, vol. 51, pp. 881–981.CrossRef
5.
Zurück zum Zitat 5. O. Saray, Gencaga Purcek, Ibrahim Karaman and H. J. Maier, Metall. Mater. Trans. A, 2013, vol. 44, pp. 4194-4206.CrossRef 5. O. Saray, Gencaga Purcek, Ibrahim Karaman and H. J. Maier, Metall. Mater. Trans. A, 2013, vol. 44, pp. 4194-4206.CrossRef
6.
Zurück zum Zitat 6. Yoshinori Iwahashi, Zenji Horita, Minoru Nemoto, T. G.Langdon, Acta Mater. 1998,vol. 46, pp. 3317-3331.CrossRef 6. Yoshinori Iwahashi, Zenji Horita, Minoru Nemoto, T. G.Langdon, Acta Mater. 1998,vol. 46, pp. 3317-3331.CrossRef
7.
Zurück zum Zitat 7. A. A. Gazder, Wenquan Cao, H.J. Davies Christopher and E. V. Pereloma, Mater. Sci. Eng. A, 2008, vol. 497, pp. 341–52.CrossRef 7. A. A. Gazder, Wenquan Cao, H.J. Davies Christopher and E. V. Pereloma, Mater. Sci. Eng. A, 2008, vol. 497, pp. 341–52.CrossRef
8.
Zurück zum Zitat 8. Saiyi Li, A. A.Gazder, I. J. Beyerlein and H.J. Davies Christopher, Pereloma E. V., Acta Mater., 2007, vol. 55, pp. 1017–32.CrossRef 8. Saiyi Li, A. A.Gazder, I. J. Beyerlein and H.J. Davies Christopher, Pereloma E. V., Acta Mater., 2007, vol. 55, pp. 1017–32.CrossRef
9.
Zurück zum Zitat 9. J. De Messemaeker, B. Verlinden and J. Van Humbeeck, Acta Mater., 2005, vol. 53, pp. 4245-47.CrossRef 9. J. De Messemaeker, B. Verlinden and J. Van Humbeeck, Acta Mater., 2005, vol. 53, pp. 4245-47.CrossRef
10.
Zurück zum Zitat 10. Saiyi Li, A.A. Gazder, Irene J. Beyerlein, E. V. Pereloma and H.J. Davies Christopher, Acta Mater., 2006, vol. 54, pp. 1087-1100.CrossRef 10. Saiyi Li, A.A. Gazder, Irene J. Beyerlein, E. V. Pereloma and H.J. Davies Christopher, Acta Mater., 2006, vol. 54, pp. 1087-1100.CrossRef
11.
Zurück zum Zitat A.A. Gazder, F. Dalla Torre, C.F. Gu, C.H.J. Davies and E.V. Pereloma, Mater. Sci. Eng. A, 2006, vol. 415, pp. 126-139.CrossRef A.A. Gazder, F. Dalla Torre, C.F. Gu, C.H.J. Davies and E.V. Pereloma, Mater. Sci. Eng. A, 2006, vol. 415, pp. 126-139.CrossRef
12.
Zurück zum Zitat 12. O.Saray, G. Purcek and I. Karaman, Rev. Adv. Mater. Sci., 2010, vol. 25, pp. 42. 12. O.Saray, G. Purcek and I. Karaman, Rev. Adv. Mater. Sci., 2010, vol. 25, pp. 42.
13.
Zurück zum Zitat 13. O.Saray, G. Purcek, I. Karaman, T. Neindorf and H.J. Maier, Mater. Sci. Eng. A, 2011, vol. 528, pp. 6573-83.CrossRef 13. O.Saray, G. Purcek, I. Karaman, T. Neindorf and H.J. Maier, Mater. Sci. Eng. A, 2011, vol. 528, pp. 6573-83.CrossRef
14.
Zurück zum Zitat 14. Tomáš Krajňák and Kristián Máthis, Mater. Eng., 2013, vol. 20, pp. 71-76. 14. Tomáš Krajňák and Kristián Máthis, Mater. Eng., 2013, vol. 20, pp. 71-76.
15.
Zurück zum Zitat 16. Sujoy S.Hazra, A. A. Gazder and E.V. Pereloma, Mater. Sci. Eng. A, 2009, vol. 524, pp. 158-167.CrossRef 16. Sujoy S.Hazra, A. A. Gazder and E.V. Pereloma, Mater. Sci. Eng. A, 2009, vol. 524, pp. 158-167.CrossRef
16.
Zurück zum Zitat 17. Sujoy S.Hazra, E. V. Pereloma and A.A.Gazder, Acta Mater. 2011, vol. 59, pp. 4015-29.CrossRef 17. Sujoy S.Hazra, E. V. Pereloma and A.A.Gazder, Acta Mater. 2011, vol. 59, pp. 4015-29.CrossRef
17.
Zurück zum Zitat 18. Kristián Máthis, Tomáš Krajňák, Radomír Kuzel and Jeno Gubicza, J. Alloys Compds., 2011, vol. 509, pp. 3522-25.CrossRef 18. Kristián Máthis, Tomáš Krajňák, Radomír Kuzel and Jeno Gubicza, J. Alloys Compds., 2011, vol. 509, pp. 3522-25.CrossRef
18.
Zurück zum Zitat 19. A.A. Gazder, Sujoy S. Hazra and E.V. Pereloma, Mater. Sci. Eng. A, 2011, vol. 530, pp. 492-503.CrossRef 19. A.A. Gazder, Sujoy S. Hazra and E.V. Pereloma, Mater. Sci. Eng. A, 2011, vol. 530, pp. 492-503.CrossRef
19.
Zurück zum Zitat 21. Branislav Hadzima, Milos Janecek, Yuri Estrin and Hyoung Seop Kim, Mater. Sci. Eng. A, 2007, vol. 462, pp. 243-47.CrossRef 21. Branislav Hadzima, Milos Janecek, Yuri Estrin and Hyoung Seop Kim, Mater. Sci. Eng. A, 2007, vol. 462, pp. 243-47.CrossRef
20.
Zurück zum Zitat 30. R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu and T.C. Lowe, J. Mater. Res., 2002, vol.17, pp. 5-8.CrossRef 30. R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu and T.C. Lowe, J. Mater. Res., 2002, vol.17, pp. 5-8.CrossRef
21.
Zurück zum Zitat R. Manna, N. K. Mukhopadhyay, G. V. S. Sastry, Metall. Mater. Trans. A, 2008, vol.39, pp.1525-1534.CrossRef R. Manna, N. K. Mukhopadhyay, G. V. S. Sastry, Metall. Mater. Trans. A, 2008, vol.39, pp.1525-1534.CrossRef
22.
Zurück zum Zitat R.Manna, N. K. Mukhopadhyay, G. V. S. Sastry, Mater Sci. Forum, 2012, vol.702-703, pp.135-138. R.Manna, N. K. Mukhopadhyay, G. V. S. Sastry, Mater Sci. Forum, 2012, vol.702-703, pp.135-138.
23.
Zurück zum Zitat O. Saray, P. Gencaga, K. Ibrahim and J.M. Hans, Metal. Mater. Trans. A., 2012, vol. 43, pp. 4320-30.CrossRef O. Saray, P. Gencaga, K. Ibrahim and J.M. Hans, Metal. Mater. Trans. A., 2012, vol. 43, pp. 4320-30.CrossRef
24.
Zurück zum Zitat 30. P.B. Prangnell, J.R. Bowen, P.J. Apps, Mater. Sci. Eng. A, 2004, vol.375–377, pp. 178–185.CrossRef 30. P.B. Prangnell, J.R. Bowen, P.J. Apps, Mater. Sci. Eng. A, 2004, vol.375–377, pp. 178–185.CrossRef
25.
Zurück zum Zitat 31. Y. Iwahashi, M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon, Metall. Trans A. 1998, vol. 29, pp. 2245-2252.CrossRef 31. Y. Iwahashi, M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon, Metall. Trans A. 1998, vol. 29, pp. 2245-2252.CrossRef
26.
Zurück zum Zitat P.B. Prangnell and J.R. Bowen: in: Ultrafine Grained Materials II, TMS, Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Saran, T.C. Lowe, eds., 2002, pp. 89–98. P.B. Prangnell and J.R. Bowen: in: Ultrafine Grained Materials II, TMS, Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Saran, T.C. Lowe, eds., 2002, pp. 89–98.
27.
Zurück zum Zitat 40. S. Li, M. A. M. Bourke, I.J. Beyerlein, D.J. Alexander, B. Clausen, Mater. Sci. Eng. A, 2004, vol. 382, pp. 217–236.CrossRef 40. S. Li, M. A. M. Bourke, I.J. Beyerlein, D.J. Alexander, B. Clausen, Mater. Sci. Eng. A, 2004, vol. 382, pp. 217–236.CrossRef
28.
Zurück zum Zitat 47. J.R. Bowen, A. Gholinia, S.M. Roberts, P.B. Prangnell, Mater. Sci. Eng. A, 2000, vol. 287, pp. 87–99.CrossRef 47. J.R. Bowen, A. Gholinia, S.M. Roberts, P.B. Prangnell, Mater. Sci. Eng. A, 2000, vol. 287, pp. 87–99.CrossRef
29.
Zurück zum Zitat 39. H. S. Kim, M. H. Seo, S. I. Hong, J. Mater. Proc. Technol. 2001, vol. 113, 622-626.CrossRef 39. H. S. Kim, M. H. Seo, S. I. Hong, J. Mater. Proc. Technol. 2001, vol. 113, 622-626.CrossRef
30.
31.
Zurück zum Zitat 41. S. R. Agnew, P. Mehrotra, T. M. Lillo, G. M. Stoica, P. K. Liaw, Mater. Sci. Eng A, 2005, vol. 408, pp. 72–78.CrossRef 41. S. R. Agnew, P. Mehrotra, T. M. Lillo, G. M. Stoica, P. K. Liaw, Mater. Sci. Eng A, 2005, vol. 408, pp. 72–78.CrossRef
32.
Zurück zum Zitat 45. Seung Chae Yoon, Hyoung Seop Kim, Mater. Sci. Eng A, 2008, vol. 490, pp. 438–444.CrossRef 45. Seung Chae Yoon, Hyoung Seop Kim, Mater. Sci. Eng A, 2008, vol. 490, pp. 438–444.CrossRef
33.
Zurück zum Zitat 42. R.K. Oruganti, P.R. Subramanian, J.S. Marte, Michael F. Gigliotti, Sundar Amancherla, Mater. Sci. Eng. A, 2005, vol. 406, pp. 102–109.CrossRef 42. R.K. Oruganti, P.R. Subramanian, J.S. Marte, Michael F. Gigliotti, Sundar Amancherla, Mater. Sci. Eng. A, 2005, vol. 406, pp. 102–109.CrossRef
34.
Zurück zum Zitat 46. Irene J. Beyerlein, László S. Tóth, Prog. Mater. Sci., 2009, vol. 54, 427–510.CrossRef 46. Irene J. Beyerlein, László S. Tóth, Prog. Mater. Sci., 2009, vol. 54, 427–510.CrossRef
35.
Zurück zum Zitat 44. Z. J. Zhang, I. H. Son, Y.T. Im, J.K. Park, Mater. Sci. Eng. A, 2007, vol. 447, pp134–141.CrossRef 44. Z. J. Zhang, I. H. Son, Y.T. Im, J.K. Park, Mater. Sci. Eng. A, 2007, vol. 447, pp134–141.CrossRef
36.
Zurück zum Zitat 43. N. M. Rusin, Phy. Metals and Metallo., 2006, vol. 102, pp. 242–249. 43. N. M. Rusin, Phy. Metals and Metallo., 2006, vol. 102, pp. 242–249.
37.
Zurück zum Zitat 23.R.Manna, N. K. Mukhopadhyay, G. V. S. Sastry, Mater Sci. Forum, 2012, vol. 710, pp. 241-246.CrossRef 23.R.Manna, N. K. Mukhopadhyay, G. V. S. Sastry, Mater Sci. Forum, 2012, vol. 710, pp. 241-246.CrossRef
38.
Zurück zum Zitat 25. Yoshinori Iwahashi, Jingtao Wang, Zenji Horita and Minoru Nemoto, Scripta Mater, 1996, vol. 35, pp. 143-146.CrossRef 25. Yoshinori Iwahashi, Jingtao Wang, Zenji Horita and Minoru Nemoto, Scripta Mater, 1996, vol. 35, pp. 143-146.CrossRef
39.
Zurück zum Zitat 26. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon, Mater. Sci. Eng. A, 1998, vol. 257, pp. 328-332.CrossRef 26. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon, Mater. Sci. Eng. A, 1998, vol. 257, pp. 328-332.CrossRef
40.
Zurück zum Zitat 27. G.R. Stibitz, Phys. Rev., 1936, vol. 49, pp. 862-863. 27. G.R. Stibitz, Phys. Rev., 1936, vol. 49, pp. 862-863.
41.
Zurück zum Zitat 28. N. Rajmohan, Y. Hayakawa, J. A. Szpunar and J. H. Root, Acta Mater., 1997, vol. 45, pp. 2385-2494.CrossRef 28. N. Rajmohan, Y. Hayakawa, J. A. Szpunar and J. H. Root, Acta Mater., 1997, vol. 45, pp. 2385-2494.CrossRef
42.
Zurück zum Zitat 29., A. Borbely, J. H. Driver and T. Ungar, Acta Mater., 2000, vol. 48, pp. 2005-16.CrossRef 29., A. Borbely, J. H. Driver and T. Ungar, Acta Mater., 2000, vol. 48, pp. 2005-16.CrossRef
43.
Zurück zum Zitat 33. G. E. Dieter; Mechanical Metallurgy, 3rd ed., McGraw-Hill, New York 1988, 241-265. 33. G. E. Dieter; Mechanical Metallurgy, 3rd ed., McGraw-Hill, New York 1988, 241-265.
44.
Zurück zum Zitat R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, 4th ed., Wiley India Pvt. Ltd., New York, 2011, pp. 290–298. R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, 4th ed., Wiley India Pvt. Ltd., New York, 2011, pp. 290–298.
45.
Zurück zum Zitat 35. W. D. Callister, Jr., Materials Science and Engineering an Introduction, 7th ed. Wiley, New York, 2010, pp. 388-391 35. W. D. Callister, Jr., Materials Science and Engineering an Introduction, 7th ed. Wiley, New York, 2010, pp. 388-391
46.
Zurück zum Zitat V. Raghavan: Materials Science and Engineering, 5th ed., PHI learning Pvt. Ltd., New Delhi, 2010, pp. 298-310. V. Raghavan: Materials Science and Engineering, 5th ed., PHI learning Pvt. Ltd., New Delhi, 2010, pp. 298-310.
47.
Zurück zum Zitat 37. José R. Tarpani, Maria H.P. Braz, Waldek W. Bose Filho, Dirceu Spinelli, Materials Research, 2002, vol. 5, pp. 357-364.CrossRef 37. José R. Tarpani, Maria H.P. Braz, Waldek W. Bose Filho, Dirceu Spinelli, Materials Research, 2002, vol. 5, pp. 357-364.CrossRef
Metadaten
Titel
Ultra-High-Strength Interstitial-Free Steel Processed by Equal-Channel Angular Pressing at Large Equivalent Strain
verfasst von
Deepa Verma
N. K. Mukhopadhyay
G. V. S. Sastry
R. Manna
Publikationsdatum
01.02.2016
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 4/2016
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-016-3352-7

Weitere Artikel der Ausgabe 4/2016

Metallurgical and Materials Transactions A 4/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.