Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 10/2019

29.07.2019

Failure Transition Mechanism of Stress Rupture Performance of the Inconel 625/9 Pct Cr Steel Dissimilar Welded Joint

verfasst von: Kai Ding, Shangfei Qiao, Shuping Liu, Bingge Zhao, Xin Huo, Xiaohong Li, Yulai Gao

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 10/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Based on a series of stress rupture tests at 620 °C under 110 to 170 MPa and at 650 °C under 80 to 110 MPa, the relationship between the stress and rupture time was obtained to evaluate the long-term performance of the welded joint (WJ). At 620 °C, the stress rupture occurred in the base metal of 9 pct Cr steel (9 pct Cr-BM), with the stress ranging from 130 to 170 MPa, yet the failure shifted to the heat-affected zone (HAZ) of 9 pct Cr steel (9 pct Cr-HAZ) with the stress ranging from 110 to 120 MPa. This failure behavior was observed at 650 °C with the turning point of 110 MPa. In particular, a ductile-to-brittle transition was determined when the rupture location shifted from 9 pct Cr-BM to 9 pct Cr-HAZ. Moreover, both the Laves phase adjacent to the M23C6 and the independent phases could be detected in the 9 pct Cr-HAZ after the stress rupture test, while only M23C6-type carbides could be found in the 9 pct Cr-BM. The appearance of the microhardness turning point and the formation of the Laves phase in the 9 pct Cr-HAZ are considered as the crucial factors resulting in the transition of the failure mode.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat 1.X.Z. Zhang, X. Wu, J.R. Liu, J. Liu, and M.X. Yao: Mater. Sci. Eng. A, 2017, vol. 706, pp. 279–86. 1.X.Z. Zhang, X. Wu, J.R. Liu, J. Liu, and M.X. Yao: Mater. Sci. Eng. A, 2017, vol. 706, pp. 279–86.
2.
Zurück zum Zitat 2.P. Yan, Z.D. Liu, H.S. Bao, Y.Q. Weng, and W. Liu: Mater. Des., 2014, vol. 54, pp. 874–79. 2.P. Yan, Z.D. Liu, H.S. Bao, Y.Q. Weng, and W. Liu: Mater. Des., 2014, vol. 54, pp. 874–79.
3.
Zurück zum Zitat 3.I. Hajiannia, M. Shamanian, and M. Kasiri: Mater. Des., 2013, vol. 50, pp. 566–73. 3.I. Hajiannia, M. Shamanian, and M. Kasiri: Mater. Des., 2013, vol. 50, pp. 566–73.
4.
Zurück zum Zitat 4.K. Mo, G. Lovicu, X. Chen, H.-M. Tung, J.B. Hansen, and J.F. Stubbins: J. Nucl. Mater., 2013, vol. 441, pp. 695–703. 4.K. Mo, G. Lovicu, X. Chen, H.-M. Tung, J.B. Hansen, and J.F. Stubbins: J. Nucl. Mater., 2013, vol. 441, pp. 695–703.
5.
Zurück zum Zitat 5.F.G. Lu, P. Liu, H.J. Ji, Y.M. Ding, X.J. Xu, and Y.L. Gao: Mater. Charact., 2014, vol. 92, pp. 149–58. 5.F.G. Lu, P. Liu, H.J. Ji, Y.M. Ding, X.J. Xu, and Y.L. Gao: Mater. Charact., 2014, vol. 92, pp. 149–58.
6.
Zurück zum Zitat 6.R.L. Klueh and D.J. Alexander: J. Nucl. Mater., 1998, vols. 258–263, pp. 1269–74. 6.R.L. Klueh and D.J. Alexander: J. Nucl. Mater., 1998, vols. 258–263, pp. 1269–74.
7.
Zurück zum Zitat 7.A. Zieliński, J. Dobrzański, H. Purzyńska, and G. Golański: Arch. Metall. Mater., 2016, vol. 61, pp. 957–64. 7.A. Zieliński, J. Dobrzański, H. Purzyńska, and G. Golański: Arch. Metall. Mater., 2016, vol. 61, pp. 957–64.
8.
Zurück zum Zitat A.C. Pandey, M.M. Giri, and A. Mahapatra: Mater. Sci. Eng. A, 2016, vol. 664, pp. 58–74. A.C. Pandey, M.M. Giri, and A. Mahapatra: Mater. Sci. Eng. A, 2016, vol. 664, pp. 58–74.
9.
Zurück zum Zitat 9.X. Liu, Z.P. Cai, X.L. Deng, and F.G. Lu: J. Mater. Res., 2017, vol. 32, pp. 3117–27. 9.X. Liu, Z.P. Cai, X.L. Deng, and F.G. Lu: J. Mater. Res., 2017, vol. 32, pp. 3117–27.
10.
Zurück zum Zitat 10.K.H. Lee, J.Y. Suh, S.M. Hong, J.Y. Huh, and W.S. Jung: Mater. Charact., 2015, vol. 106, pp. 266–72. 10.K.H. Lee, J.Y. Suh, S.M. Hong, J.Y. Huh, and W.S. Jung: Mater. Charact., 2015, vol. 106, pp. 266–72.
11.
Zurück zum Zitat 11.X. Liu, F.G. Lu, R.J. Yang, P. Wang, X.J. Xu, and X. Huo: J. Mater. Eng. Perform., 2015, vol. 24, pp. 1434–40. 11.X. Liu, F.G. Lu, R.J. Yang, P. Wang, X.J. Xu, and X. Huo: J. Mater. Eng. Perform., 2015, vol. 24, pp. 1434–40.
12.
Zurück zum Zitat 12.J. Bugge, S. Kjær, and R. Blum: Energy, 2006, vol. 31, pp. 1437–45. 12.J. Bugge, S. Kjær, and R. Blum: Energy, 2006, vol. 31, pp. 1437–45.
13.
Zurück zum Zitat 13.A.K. Roy, M.H. Hasan, and J. Pal: Mater. Sci. Eng. A, 2009, vol. 520, pp. 184–88. 13.A.K. Roy, M.H. Hasan, and J. Pal: Mater. Sci. Eng. A, 2009, vol. 520, pp. 184–88.
14.
Zurück zum Zitat 14.X.Q. Song, L.Y. Tang, Z. Chen, and R.C. Zhou: J. Mater. Sci., 2017, vol. 52, pp. 4587–98. 14.X.Q. Song, L.Y. Tang, Z. Chen, and R.C. Zhou: J. Mater. Sci., 2017, vol. 52, pp. 4587–98.
15.
Zurück zum Zitat 15.X.L. Deng, F.G. Lu, H.C. Cui, X.H. Tang, and Z.G. Li: Mater. Sci. Eng. A, 2016, vol. 651, pp. 1018–30. 15.X.L. Deng, F.G. Lu, H.C. Cui, X.H. Tang, and Z.G. Li: Mater. Sci. Eng. A, 2016, vol. 651, pp. 1018–30.
16.
Zurück zum Zitat 16.Q. Guo, F.G. Lu, H.C. Cui, R.J. Yang, X. Liu, and X.H. Tang: J. Mater. Process. Technol., 2015, vol. 226, pp. 125–33. 16.Q. Guo, F.G. Lu, H.C. Cui, R.J. Yang, X. Liu, and X.H. Tang: J. Mater. Process. Technol., 2015, vol. 226, pp. 125–33.
17.
Zurück zum Zitat 17.C.D. Shao, F.G. Lu, X.F. Wang, Y.M. Ding, and Z.G. Li: J. Mater. Sci. Technol., 2016, vol. 33, pp. 1610–20. 17.C.D. Shao, F.G. Lu, X.F. Wang, Y.M. Ding, and Z.G. Li: J. Mater. Sci. Technol., 2016, vol. 33, pp. 1610–20.
18.
Zurück zum Zitat 18.W. Liu, F.G. Lu, Y.H. Wei, Y.M. Ding, P. Wang, and X.H. Tang: Mater. Des., 2016, vol. 108, pp. 195–206. 18.W. Liu, F.G. Lu, Y.H. Wei, Y.M. Ding, P. Wang, and X.H. Tang: Mater. Des., 2016, vol. 108, pp. 195–206.
19.
Zurück zum Zitat 19.M. Taneike, K. Sawada, and F. Abe: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1255–62. 19.M. Taneike, K. Sawada, and F. Abe: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1255–62.
20.
Zurück zum Zitat 20.Q.F. He, Y.F. Ye, and Y. Yang: J. Phase Equilib. Diff., 2017, vol. 38, pp. 416–25. 20.Q.F. He, Y.F. Ye, and Y. Yang: J. Phase Equilib. Diff., 2017, vol. 38, pp. 416–25.
21.
Zurück zum Zitat 21.L. Tan, D.T. Hoelzer, J.T. Busby, M.A. Sokolov, and R.L. Klueh: J. Nucl. Mater., 2012, vol. 422, pp. 45–50. 21.L. Tan, D.T. Hoelzer, J.T. Busby, M.A. Sokolov, and R.L. Klueh: J. Nucl. Mater., 2012, vol. 422, pp. 45–50.
22.
Zurück zum Zitat 22.L. Tan, Y. Yang, and J.T. Busby: J. Nucl. Mater., 2013, vol. 442, pp. S13–S17. 22.L. Tan, Y. Yang, and J.T. Busby: J. Nucl. Mater., 2013, vol. 442, pp. S13–S17.
23.
Zurück zum Zitat 23.S.S. Wang, D.L. Deng, L. Chang, and X.D. Hui: Mater. Des., 2013, vol. 50, pp. 174–80. 23.S.S. Wang, D.L. Deng, L. Chang, and X.D. Hui: Mater. Des., 2013, vol. 50, pp. 174–80.
24.
Zurück zum Zitat 24.H. Wang, W. Yan, S.V. Zwaag, Q.Q. Shi, W. Wang, K. Yang, and Y.Y. Shan: Acta Mater., 2017, vol. 134, pp. 143–54. 24.H. Wang, W. Yan, S.V. Zwaag, Q.Q. Shi, W. Wang, K. Yang, and Y.Y. Shan: Acta Mater., 2017, vol. 134, pp. 143–54.
25.
Zurück zum Zitat 25.L. Maddi, G.S. Deshmukh, A.R. Ballal, D.R. Peshwe, R.K. Paretkar, K. Laha, and M.D. Mathew: Mater. Sci. Eng. A, 2016, vol. 668, pp. 215–23. 25.L. Maddi, G.S. Deshmukh, A.R. Ballal, D.R. Peshwe, R.K. Paretkar, K. Laha, and M.D. Mathew: Mater. Sci. Eng. A, 2016, vol. 668, pp. 215–23.
26.
Zurück zum Zitat 26.S. Zhu, M. Yang, X.L. Song, S. Tang, and Z.D. Xiang: Mater. Charact., 2014, vol. 98, pp. 60–65. 26.S. Zhu, M. Yang, X.L. Song, S. Tang, and Z.D. Xiang: Mater. Charact., 2014, vol. 98, pp. 60–65.
27.
Zurück zum Zitat 27.G. Dimmler, P. Weinert, E. Kozeschnik, and H. Cerjak: Mater. Charact., 2003, vol. 51, pp. 341–52. 27.G. Dimmler, P. Weinert, E. Kozeschnik, and H. Cerjak: Mater. Charact., 2003, vol. 51, pp. 341–52.
28.
Zurück zum Zitat 28.O. Prat, J. Garcia, D. Rojas, G. Suauthoff, and G. Inden: Intermetallics, 2013, vol. 32, pp. 362–72. 28.O. Prat, J. Garcia, D. Rojas, G. Suauthoff, and G. Inden: Intermetallics, 2013, vol. 32, pp. 362–72.
29.
Zurück zum Zitat 29.Z.F. Peng, S. Liu, C. Yang, F.Y. Chen, and F.F. Peng: Acta Mater., 2018, vol. 143, pp. 141–55. 29.Z.F. Peng, S. Liu, C. Yang, F.Y. Chen, and F.F. Peng: Acta Mater., 2018, vol. 143, pp. 141–55.
30.
Zurück zum Zitat 30.S.K. Rai, A. Kumar, V. Shankar, T. Jayakumar, and K.B.S. Rao: Scripta Mater., 2004, vol. 51, pp. 59–63. 30.S.K. Rai, A. Kumar, V. Shankar, T. Jayakumar, and K.B.S. Rao: Scripta Mater., 2004, vol. 51, pp. 59–63.
31.
Zurück zum Zitat 31.Ö. Özgün, H.Ö. Gülsoy, R. Yilmaz, and F. Findik: J. Alloy. Compd., 2013, vol. 546, pp. 192–207. 31.Ö. Özgün, H.Ö. Gülsoy, R. Yilmaz, and F. Findik: J. Alloy. Compd., 2013, vol. 546, pp. 192–207.
32.
Zurück zum Zitat 32.A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, and M. Chmielus: Mater. Des., 2016, vol. 111, pp. 482–91. 32.A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, and M. Chmielus: Mater. Des., 2016, vol. 111, pp. 482–91.
33.
Zurück zum Zitat 33.L.M. Suave, J. Cormier, P. Villechaise, S. Aurélie, H. Zéline, and D. Bertheau: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2963–82. 33.L.M. Suave, J. Cormier, P. Villechaise, S. Aurélie, H. Zéline, and D. Bertheau: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2963–82.
34.
Zurück zum Zitat 34.P.H. Wang, J.M. Chen, H.Y. Fu, S. Liu, H.W. Li, and Z.Y. Xu: J. Nucl. Mater., 2013, vol. 442, pp. S9–S12. 34.P.H. Wang, J.M. Chen, H.Y. Fu, S. Liu, H.W. Li, and Z.Y. Xu: J. Nucl. Mater., 2013, vol. 442, pp. S9–S12.
35.
Zurück zum Zitat 35.I.J. Moore, M.G. Burke, and E.J. Palmiere: Acta Mater., 2016, vol. 119, pp. 157–66. 35.I.J. Moore, M.G. Burke, and E.J. Palmiere: Acta Mater., 2016, vol. 119, pp. 157–66.
36.
Zurück zum Zitat 36.Z.X. Xia, C. Zhang, H. Lan, Z.G. Yang, P.H. Wang, J.M. Chen, Z.Y. Xu, X.W. Li, and S. Liu: Mater. Sci. Eng. A, 2010, vol. 528, pp. 657–62. 36.Z.X. Xia, C. Zhang, H. Lan, Z.G. Yang, P.H. Wang, J.M. Chen, Z.Y. Xu, X.W. Li, and S. Liu: Mater. Sci. Eng. A, 2010, vol. 528, pp. 657–62.
37.
Zurück zum Zitat 37.K. Ding, P. Wang, X. Liu, X.H. Li, B.G. Zhao, and Y.L. Gao: J. Mater. Eng. Perform., 2018, vol. 27 pp. 6027–39. 37.K. Ding, P. Wang, X. Liu, X.H. Li, B.G. Zhao, and Y.L. Gao: J. Mater. Eng. Perform., 2018, vol. 27 pp. 6027–39.
38.
Zurück zum Zitat 38.Q. Guo, F.G. Lu, X. Liu, R.J. Yang, H.C. Cui, and Y.L. Gao: Mater. Sci. Eng. A, 2015, vol. 638, pp. 240–50. 38.Q. Guo, F.G. Lu, X. Liu, R.J. Yang, H.C. Cui, and Y.L. Gao: Mater. Sci. Eng. A, 2015, vol. 638, pp. 240–50.
39.
Zurück zum Zitat 39.Q.J. Wu, F.G. Lu, H.C. Cui, Y.M. Ding, X. Liu, and Y.L. Gao: Mater. Sci. Eng. A, 2014, vol. 615, pp. 98–106. 39.Q.J. Wu, F.G. Lu, H.C. Cui, Y.M. Ding, X. Liu, and Y.L. Gao: Mater. Sci. Eng. A, 2014, vol. 615, pp. 98–106.
40.
Zurück zum Zitat 40.H.G. Dong, P.X. Wang, X.H. Hao, S. Li, P. Li, Y.L. Gao, B.G. Zhao, and D.J. Yan: Mater. Lett., 2018, vol. 228, pp. 407–10. 40.H.G. Dong, P.X. Wang, X.H. Hao, S. Li, P. Li, Y.L. Gao, B.G. Zhao, and D.J. Yan: Mater. Lett., 2018, vol. 228, pp. 407–10.
41.
Zurück zum Zitat 41.K. Ding, H.J. Ji, X. Liu, P. Wang, Q.L. Zhang, X.H. Li, and Y.L. Gao: J. Iron Steel Res. Int., 2018, vol. 25 pp. 847–53. 41.K. Ding, H.J. Ji, X. Liu, P. Wang, Q.L. Zhang, X.H. Li, and Y.L. Gao: J. Iron Steel Res. Int., 2018, vol. 25 pp. 847–53.
42.
Zurück zum Zitat 42.K. Ding, H.J. Ji, Q.L. Zhang, X. Liu, P. Wang, X.H. Li, L. Zhang, and Y.L. Gao: J. Iron Steel Res. Int., 2018, vol. 25, pp. 839–46. 42.K. Ding, H.J. Ji, Q.L. Zhang, X. Liu, P. Wang, X.H. Li, L. Zhang, and Y.L. Gao: J. Iron Steel Res. Int., 2018, vol. 25, pp. 839–46.
43.
Zurück zum Zitat 43.Q.J. Wu, F.G. Lu, H.C. Cui, X. Liu, P. Wang, and Y.L. Gao: Mater. Lett., 2015, vol. 141, pp. 242–44. 43.Q.J. Wu, F.G. Lu, H.C. Cui, X. Liu, P. Wang, and Y.L. Gao: Mater. Lett., 2015, vol. 141, pp. 242–44.
44.
Zurück zum Zitat 44.H.K. Ji, Y.J. Oh, I.S. Hwang, J.K. Dong, and J.T. Kim: J. Nucl. Mater., 2001, vol. 299, pp. 132–39. 44.H.K. Ji, Y.J. Oh, I.S. Hwang, J.K. Dong, and J.T. Kim: J. Nucl. Mater., 2001, vol. 299, pp. 132–39.
45.
Zurück zum Zitat A. Laha, K.S. Chandrevathi, P. Parameswaran, K. BhanuSankaraRao, and S.L. Mannan: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 58–68. A. Laha, K.S. Chandrevathi, P. Parameswaran, K. BhanuSankaraRao, and S.L. Mannan: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 58–68.
46.
Zurück zum Zitat 46.T. Watanabe, M. Tabuchi, M. Yamazaki, H. Hongo, and T. Tanabe: Int. J. Press. Vessel. Pip., 2006, vol. 83, pp. 63–71. 46.T. Watanabe, M. Tabuchi, M. Yamazaki, H. Hongo, and T. Tanabe: Int. J. Press. Vessel. Pip., 2006, vol. 83, pp. 63–71.
47.
Zurück zum Zitat 47.Y.H. Wei, S.F. Qiao, F.G. Lu, and W. Liu: Mater. Des., 2016, vol. 97, pp. 268–78. 47.Y.H. Wei, S.F. Qiao, F.G. Lu, and W. Liu: Mater. Des., 2016, vol. 97, pp. 268–78.
48.
Zurück zum Zitat 48.P. Dahlman, F. Gunnberg, and M. Jacobson: J. Mater. Process. Technol., 2004, vol. 147, pp. 181–84. 48.P. Dahlman, F. Gunnberg, and M. Jacobson: J. Mater. Process. Technol., 2004, vol. 147, pp. 181–84.
49.
Zurück zum Zitat 49.J. Hua, R. Shivpuri, X.M. Cheng, V. Bedekar, Y. Matsumoto, F. Hashimoto, and T.R. Watkins: Mater. Sci. Eng. A, 2005, vol. 394, pp. 238–48. 49.J. Hua, R. Shivpuri, X.M. Cheng, V. Bedekar, Y. Matsumoto, F. Hashimoto, and T.R. Watkins: Mater. Sci. Eng. A, 2005, vol. 394, pp. 238–48.
50.
Zurück zum Zitat 50.W. Liu, X. Liu, F.G. Lu, X.H. Tang, H.C. Cui, and Y.L. Gao: Mater. Sci. Eng. A, 2015, vol. 644, pp. 337–46. 50.W. Liu, X. Liu, F.G. Lu, X.H. Tang, H.C. Cui, and Y.L. Gao: Mater. Sci. Eng. A, 2015, vol. 644, pp. 337–46.
51.
Zurück zum Zitat 51.P. Liu, F.G. Lu, X. Liu, H.J. Ji, and Y.L. Gao: J. Alloys Compd., 2014, vol. 584, pp. 430–37. 51.P. Liu, F.G. Lu, X. Liu, H.J. Ji, and Y.L. Gao: J. Alloys Compd., 2014, vol. 584, pp. 430–37.
52.
Zurück zum Zitat 52.A. Elrefaey, Y. Javadi, J.A. Francis, M.D. Callaghan, and A.J. Leonard: Int. J. Press. Vessel. Pip., 2018, vol. 165 pp. 20–28. 52.A. Elrefaey, Y. Javadi, J.A. Francis, M.D. Callaghan, and A.J. Leonard: Int. J. Press. Vessel. Pip., 2018, vol. 165 pp. 20–28.
53.
Zurück zum Zitat 53.C.G. Panait, W. Bendick, A. Fuchsmann, A.F. Gourgues-Lorenzon, and J. Besson: Int. J. Press. Vessel. Pip., 2010, vol. 87, pp. 326–35. 53.C.G. Panait, W. Bendick, A. Fuchsmann, A.F. Gourgues-Lorenzon, and J. Besson: Int. J. Press. Vessel. Pip., 2010, vol. 87, pp. 326–35.
54.
Zurück zum Zitat 54.H.G. Armaki, R. Chen, K. Maruyama, and M. Igarashi: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3084–94. 54.H.G. Armaki, R. Chen, K. Maruyama, and M. Igarashi: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3084–94.
55.
Zurück zum Zitat 55.X. Wang, X. Wang, H.J. Li, H.L. Wu, Y.Y. Ren, H.W. Liu, and H. Liu: Weld. World, 2017, vol. 61 pp. 231–39. 55.X. Wang, X. Wang, H.J. Li, H.L. Wu, Y.Y. Ren, H.W. Liu, and H. Liu: Weld. World, 2017, vol. 61 pp. 231–39.
56.
Zurück zum Zitat 56.J.S. Lee, H.G. Armaki, K. Maruyama, T. Muraki, and H. Asahi: Mater. Sci. Eng. A, 2006, vol. 428, pp. 270–75. 56.J.S. Lee, H.G. Armaki, K. Maruyama, T. Muraki, and H. Asahi: Mater. Sci. Eng. A, 2006, vol. 428, pp. 270–75.
57.
Zurück zum Zitat 57.D. Rojas, J. Garcia, O. Prat, L. Agudo, and C. Carrasco: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1372–81. 57.D. Rojas, J. Garcia, O. Prat, L. Agudo, and C. Carrasco: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1372–81.
58.
Zurück zum Zitat 58.K. Shinozaki, L.I. De-Jun, H. Kuroki, H. Harada, and K. Ohishi: ISIJ Int., 2002, vol. 42, pp. 1578–84. 58.K. Shinozaki, L.I. De-Jun, H. Kuroki, H. Harada, and K. Ohishi: ISIJ Int., 2002, vol. 42, pp. 1578–84.
59.
Zurück zum Zitat 59.Y.T. Xu, Y.H. Nie, M.J. Wang, W. Li, and X.J. Jin: Acta Mater., 2017, vol. 131, pp. 110–22. 59.Y.T. Xu, Y.H. Nie, M.J. Wang, W. Li, and X.J. Jin: Acta Mater., 2017, vol. 131, pp. 110–22.
60.
Zurück zum Zitat 60.M.I. Isik, A. Kostka, and G. Enggeler: Acta Mater., 2014, vol. 81, pp. 230–40. 60.M.I. Isik, A. Kostka, and G. Enggeler: Acta Mater., 2014, vol. 81, pp. 230–40.
Metadaten
Titel
Failure Transition Mechanism of Stress Rupture Performance of the Inconel 625/9 Pct Cr Steel Dissimilar Welded Joint
verfasst von
Kai Ding
Shangfei Qiao
Shuping Liu
Bingge Zhao
Xin Huo
Xiaohong Li
Yulai Gao
Publikationsdatum
29.07.2019
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 10/2019
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-019-05372-0

Weitere Artikel der Ausgabe 10/2019

Metallurgical and Materials Transactions A 10/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.