Skip to main content
Erschienen in: Journal of Electronic Materials 12/2023

06.10.2023 | Original Research Article

A Closer Look at the Fabrication of Iron(II)-Doped Borate Glasses and their Structural, Optical, and Gamma-Ray Shielding Characteristics

verfasst von: Norah A. M. Alsaif, Haifa I. Alrebdi, Adel M. El-Refaey, R. A. Elsad, M. S. Shams, W. M. Almutairi, Y. S. Rammah

Erschienen in: Journal of Electronic Materials | Ausgabe 12/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Six samples of iron(II)-doped borate glasses with chemical composition 75B2O3-10BaO3-15PbO-xFe2O3: x = 0.0 (Fe-0.0)–0.5 (Fe-0.5) mol.% in steps of 0.1 mol.% were fabricated via the conventional melt quench route. The structure, physical, optical absorbance, and energy gap were investigated. Gamma (γ)-ray attenuating characteristics of Fe glass blocks were explored via the XCOM and Phy-X/PSD programs and Geant4 simulation code. The color of Fe glasses was changed from yellow to brown with the addition of Fe2O3. The amorphous state of the Fe glass systems was detected by x-ray diffraction. Densities were found to increase linearly from 5.09154 g cm−3 to 5.92731 g cm−3, and the molar volume (Vm) exhibited identical behavior with a positive slope. The Vm was found to be 20.707 < Vm < 20.859 cm3/mol as Fe2O3 content in the samples was increased from 0.0 mol.% to 0.5 mol.%. Values of optical gap energy were 2.82 eV, 2.75 eV, 2.58 eV, 2.46 eV, 2.40 eV, and 2.36 eV for Fe-0.0–Fe-0.5 glass samples, respectively. The K-absorption edges for 82Pb207 and 56Ba137 were detected at 88.0045 and 37.4406 keV, respectively, while the L3 edge for 82Pb207 was detected at 13.0352 keV. Results showed that Fe glass samples have a higher capacity to attenuate γ-rays compared to commercial glasses (RS-360).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.S. Al-Buriahia, Y.S.M. Alajeramib, A.S. Abouhaswad, A. Alalawif, T. Nutarog, and B. Tonguc, Effect of chromium oxide on the physical, optical, and radiation shielding properties of lead sodium borate glasses. J. Non-Cryst. Solids 544, 120171 (2020).CrossRef M.S. Al-Buriahia, Y.S.M. Alajeramib, A.S. Abouhaswad, A. Alalawif, T. Nutarog, and B. Tonguc, Effect of chromium oxide on the physical, optical, and radiation shielding properties of lead sodium borate glasses. J. Non-Cryst. Solids 544, 120171 (2020).CrossRef
2.
Zurück zum Zitat R.A. Elsad, Y.S. Rammah, F.I. El-Agawany, E.M. Ahmed, and M.S. Shams, Er3+/Nd3+ ions reinforced lead-borate glasses: an extensive investigation of physical, linear optical characteristics, and photon shielding capacity. J. Mater. Res. Technol. 14, 3161 (2021).CrossRef R.A. Elsad, Y.S. Rammah, F.I. El-Agawany, E.M. Ahmed, and M.S. Shams, Er3+/Nd3+ ions reinforced lead-borate glasses: an extensive investigation of physical, linear optical characteristics, and photon shielding capacity. J. Mater. Res. Technol. 14, 3161 (2021).CrossRef
3.
Zurück zum Zitat Y.S. Rammah, F.I. El-Agawany, M.M. Hessien, I.O. Olarinoye, A.M. Abdelghany, and M.S. Shams, Investigation of mechanical, photon buildup factors, and neutron-sensing properties of B2O3-Al2O3-Li2O-CuO glasses. J. Mater. Sci.: Mater. Electron. 32, 24401 (2021). Y.S. Rammah, F.I. El-Agawany, M.M. Hessien, I.O. Olarinoye, A.M. Abdelghany, and M.S. Shams, Investigation of mechanical, photon buildup factors, and neutron-sensing properties of B2O3-Al2O3-Li2O-CuO glasses. J. Mater. Sci.: Mater. Electron. 32, 24401 (2021).
4.
Zurück zum Zitat A.M. Abdelghany and F.H. Margha, New transparent nano-glass-ceramics of SiO2 and CaF2 doped SrO-B2O3 glass. Silicon 8(4), 563 (2016).CrossRef A.M. Abdelghany and F.H. Margha, New transparent nano-glass-ceramics of SiO2 and CaF2 doped SrO-B2O3 glass. Silicon 8(4), 563 (2016).CrossRef
5.
Zurück zum Zitat E.M.A. Khalil, F.H. El-Batal, Y.M. Hamdy, H.M. Zidan, M.S. Aziz, and A.M. Abdelghany, UV-visible and IR spectroscopic studies of gamma irradiated transition metal doped lead silicate glasses. Silicon 2, 49 (2010).CrossRef E.M.A. Khalil, F.H. El-Batal, Y.M. Hamdy, H.M. Zidan, M.S. Aziz, and A.M. Abdelghany, UV-visible and IR spectroscopic studies of gamma irradiated transition metal doped lead silicate glasses. Silicon 2, 49 (2010).CrossRef
6.
Zurück zum Zitat M.A. Marzouk, F.H. ElBatal, and A.M. Abdelghany, Ultraviolet and infrared absorption spectra of Cr2O3 doped—Sodium metaphosphate, lead metaphosphate and zinc metaphosphate glasses and effects of gamma irradiation: a comparative study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 114, 658 (2013).CrossRef M.A. Marzouk, F.H. ElBatal, and A.M. Abdelghany, Ultraviolet and infrared absorption spectra of Cr2O3 doped—Sodium metaphosphate, lead metaphosphate and zinc metaphosphate glasses and effects of gamma irradiation: a comparative study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 114, 658 (2013).CrossRef
7.
Zurück zum Zitat Y.S. Rammah, A.A. Ali, R. El-Mallawany, and F.I. El-Agawany, Fabrication, physical, optical characteristics and gamma-ray competence of novel bismo-borate glasses doped with Yb2O3 rare earth. Phys. B: Condens. 583, 412055 (2020).CrossRef Y.S. Rammah, A.A. Ali, R. El-Mallawany, and F.I. El-Agawany, Fabrication, physical, optical characteristics and gamma-ray competence of novel bismo-borate glasses doped with Yb2O3 rare earth. Phys. B: Condens. 583, 412055 (2020).CrossRef
8.
Zurück zum Zitat K. Rammah, R. Gokhan, I.U.G. El-Mallawany, and F.I. El-Agawany, Investigation of optical, physical, and gamma-ray shielding features of novel vanadylboro-phosphate glasses. J. Non-Cryst. Solids 533, 533 (2020).CrossRef K. Rammah, R. Gokhan, I.U.G. El-Mallawany, and F.I. El-Agawany, Investigation of optical, physical, and gamma-ray shielding features of novel vanadylboro-phosphate glasses. J. Non-Cryst. Solids 533, 533 (2020).CrossRef
9.
Zurück zum Zitat R.A. Elsad, A.M. Abdel-Aziz, E.M. Ahmed, Y.S. Rammah, F.I. El-Agawany, and M.S. Shams, FT-IR, ultrasonic and dielectric characteristics of neodymium (III)/erbium (III) lead-borate glasses: experimental studies. J. Mater. Res. Technol. 13, 1363 (2021).CrossRef R.A. Elsad, A.M. Abdel-Aziz, E.M. Ahmed, Y.S. Rammah, F.I. El-Agawany, and M.S. Shams, FT-IR, ultrasonic and dielectric characteristics of neodymium (III)/erbium (III) lead-borate glasses: experimental studies. J. Mater. Res. Technol. 13, 1363 (2021).CrossRef
10.
Zurück zum Zitat N.A.M. Alsaif, R.A. Elsad, A.M. Abdel-Aziz, E.M. Ahmed, Y.S. Rammah, M.H. Misbah, and M.S. Shams, Linear optical characteristics as well as gamma-ray shielding capabilities of quaternary lithium-zinc borate glasses with Y3+ ions. Opt. Mater. 131, 112673 (2022).CrossRef N.A.M. Alsaif, R.A. Elsad, A.M. Abdel-Aziz, E.M. Ahmed, Y.S. Rammah, M.H. Misbah, and M.S. Shams, Linear optical characteristics as well as gamma-ray shielding capabilities of quaternary lithium-zinc borate glasses with Y3+ ions. Opt. Mater. 131, 112673 (2022).CrossRef
11.
Zurück zum Zitat N.A.M. Alsaif, Z.Y. Khattari, M.S. Shams, Y.S. Rammah, A.M. El-Refaey, and R.A. Elsad, Elastic-mechanical, dielectric properties, and γ radiation safety competence of calcium boro-zinc glass systems reinforced with Nb5+ ions: experimental and theoretical studies. J. Mater. Sci.: Mater. Electron 34, 402 (2023). N.A.M. Alsaif, Z.Y. Khattari, M.S. Shams, Y.S. Rammah, A.M. El-Refaey, and R.A. Elsad, Elastic-mechanical, dielectric properties, and γ radiation safety competence of calcium boro-zinc glass systems reinforced with Nb5+ ions: experimental and theoretical studies. J. Mater. Sci.: Mater. Electron 34, 402 (2023).
12.
Zurück zum Zitat N.A.M. Alsaif, S.K. Ahmmad, Z.Y. Khattari, A.M. Abdelghany, A.M. El-Refaey, Y.S. Rammah, M.S. Shams, and R.A. Elsad, Synthesis, structure, radiation attenuation efficacy as well as prediction of density using artificial intelligence techniques of lead borate lithium zinc strontium glasses. Opt. Mater. 137, 113599 (2023).CrossRef N.A.M. Alsaif, S.K. Ahmmad, Z.Y. Khattari, A.M. Abdelghany, A.M. El-Refaey, Y.S. Rammah, M.S. Shams, and R.A. Elsad, Synthesis, structure, radiation attenuation efficacy as well as prediction of density using artificial intelligence techniques of lead borate lithium zinc strontium glasses. Opt. Mater. 137, 113599 (2023).CrossRef
13.
Zurück zum Zitat M.S. Shams, Y.S. Rammah, F.I. El-Agawany, and R.A. Elsad, Synthesis, structure, physical, dielectric characteristics, and gamma-ray shielding competences of novel P2O5-Li2O-ZnO-CdO glasses. J. Mater. Sci.: Mater. Electron. 32, 1877 (2021). M.S. Shams, Y.S. Rammah, F.I. El-Agawany, and R.A. Elsad, Synthesis, structure, physical, dielectric characteristics, and gamma-ray shielding competences of novel P2O5-Li2O-ZnO-CdO glasses. J. Mater. Sci.: Mater. Electron. 32, 1877 (2021).
14.
Zurück zum Zitat R.A. Elsad, K.A. Mahmoud, Y.S. Rammah, and A.S. Abouhaswa, Fabrication, structural, optical, and dielectric properties of PVC-PbO nanocomposites, as well as their gamma-ray shielding capability. Radiat. Phys. Chem. 189, 109753 (2021).CrossRef R.A. Elsad, K.A. Mahmoud, Y.S. Rammah, and A.S. Abouhaswa, Fabrication, structural, optical, and dielectric properties of PVC-PbO nanocomposites, as well as their gamma-ray shielding capability. Radiat. Phys. Chem. 189, 109753 (2021).CrossRef
15.
Zurück zum Zitat N.A.M. Alsaif, Z.Y. Khattari, Y.S. Rammah, M.S. Shams, and R.A. Elsad, Bismo-borate glasses doped with La3+ and Eu3+ ions: synthesis, physical, optical and electrical characteristics. J. Mater. Sci.: Mater. Electron 33, 19667 (2022). N.A.M. Alsaif, Z.Y. Khattari, Y.S. Rammah, M.S. Shams, and R.A. Elsad, Bismo-borate glasses doped with La3+ and Eu3+ ions: synthesis, physical, optical and electrical characteristics. J. Mater. Sci.: Mater. Electron 33, 19667 (2022).
16.
Zurück zum Zitat R.D. Marco, B. Pejcic, and X.D. Wang, Continuous flow analysis of iron (III) in seawater using a chalcogenide glass ion-selective electrode. Lab. Robot. Autom. 11, 284 (1999).CrossRef R.D. Marco, B. Pejcic, and X.D. Wang, Continuous flow analysis of iron (III) in seawater using a chalcogenide glass ion-selective electrode. Lab. Robot. Autom. 11, 284 (1999).CrossRef
17.
Zurück zum Zitat K. Baert, W. Meulebroeck, H. Wouters, P. Cosyns, K. Nys, H. Thienpontb, and H. Terryn, Using Raman spectroscopy as a tool for the detection of iron in glass. J. Raman Spectrosc. 42, 1789 (2011).CrossRef K. Baert, W. Meulebroeck, H. Wouters, P. Cosyns, K. Nys, H. Thienpontb, and H. Terryn, Using Raman spectroscopy as a tool for the detection of iron in glass. J. Raman Spectrosc. 42, 1789 (2011).CrossRef
18.
Zurück zum Zitat V.P. Singh, S.P. Shirmardi, M.E. Medhat, and N.M. Badiger, Determination of mass attenuation coefficient for some polymers using Monte Carlo simulation. Vacuum 119, 284 (2015).CrossRef V.P. Singh, S.P. Shirmardi, M.E. Medhat, and N.M. Badiger, Determination of mass attenuation coefficient for some polymers using Monte Carlo simulation. Vacuum 119, 284 (2015).CrossRef
19.
Zurück zum Zitat Z.Y. Khattari, N.A. Alsaif, Y.S. Rammah, M.S. Shams, and R.A. Elsad, Physical, elastic-mechanical and radiation shielding properties of antimony borate–lithium in the form B2O3-CaO-Li2O-Sb2O3: experimental, theoretical and simulation approaches. Appl. Phys. A 128, 1 (2022).CrossRef Z.Y. Khattari, N.A. Alsaif, Y.S. Rammah, M.S. Shams, and R.A. Elsad, Physical, elastic-mechanical and radiation shielding properties of antimony borate–lithium in the form B2O3-CaO-Li2O-Sb2O3: experimental, theoretical and simulation approaches. Appl. Phys. A 128, 1 (2022).CrossRef
20.
Zurück zum Zitat E. Sakar, F. Özgür, A. Bünyamin, M.I. Sayyed, and K. Murat, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020).CrossRef E. Sakar, F. Özgür, A. Bünyamin, M.I. Sayyed, and K. Murat, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020).CrossRef
21.
Zurück zum Zitat N.F. Mott and E.A. Davis, Electronic Processes in Non-crystalline Materials, 2nd ed., (Oxford: Oxford University Press, 1977). N.F. Mott and E.A. Davis, Electronic Processes in Non-crystalline Materials, 2nd ed., (Oxford: Oxford University Press, 1977).
22.
Zurück zum Zitat M.S. Sadeq and A. Ibrahim, The path towards wide-bandgap and UV-transparent lithium phosphate glasses doped with cobalt oxide for optical applications. J. Non-Cryst. Solids 569, 120983 (2021).CrossRef M.S. Sadeq and A. Ibrahim, The path towards wide-bandgap and UV-transparent lithium phosphate glasses doped with cobalt oxide for optical applications. J. Non-Cryst. Solids 569, 120983 (2021).CrossRef
23.
Zurück zum Zitat S.F. Mansour, S. Wageh, M.F. Alotaibi, M.A. Abdo, and M.S. Sadeq, Impact of bismuth oxide on the structure, optical features and ligand field parameters of borosilicate glasses doped with nickel oxide. Ceram. Int. 47, 21443 (2021).CrossRef S.F. Mansour, S. Wageh, M.F. Alotaibi, M.A. Abdo, and M.S. Sadeq, Impact of bismuth oxide on the structure, optical features and ligand field parameters of borosilicate glasses doped with nickel oxide. Ceram. Int. 47, 21443 (2021).CrossRef
24.
Zurück zum Zitat A. Ibrahim, M.A. Farag, and M.S. Sadeq, Towards highly transparent tungsten zinc sodium borate glasses for radiation shielding purposes. Ceram. Int. 48, 12079 (2022).CrossRef A. Ibrahim, M.A. Farag, and M.S. Sadeq, Towards highly transparent tungsten zinc sodium borate glasses for radiation shielding purposes. Ceram. Int. 48, 12079 (2022).CrossRef
25.
Zurück zum Zitat J. Tauc and A. Menth, States in the gap. J. Non-Cryst. Solids 8–10, 569 (1972).CrossRef J. Tauc and A. Menth, States in the gap. J. Non-Cryst. Solids 8–10, 569 (1972).CrossRef
26.
Zurück zum Zitat S. Agostinelli, J. Allison, and K. Amako, Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys Res. A: Accel. Spectrom. Detect. Assoc. Equip. 506, 250 (2003).CrossRef S. Agostinelli, J. Allison, and K. Amako, Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys Res. A: Accel. Spectrom. Detect. Assoc. Equip. 506, 250 (2003).CrossRef
27.
Zurück zum Zitat M.E. Medhat and Y. Wang, Geant4 code for simulation attenuation of gamma rays through scintillation detectors. Ann. Nucl. Energy 62, 316 (2013).CrossRef M.E. Medhat and Y. Wang, Geant4 code for simulation attenuation of gamma rays through scintillation detectors. Ann. Nucl. Energy 62, 316 (2013).CrossRef
28.
Zurück zum Zitat K. Sukumar, D.S. Zucker, and K. Olsen, XCOM: photon cross section database, NIST standard reference database (XGAM) (2010). K. Sukumar, D.S. Zucker, and K. Olsen, XCOM: photon cross section database, NIST standard reference database (XGAM) (2010).
29.
Zurück zum Zitat R. El-Mallawany, M.I. Sayyed, M.G. Dong, and Y.S. Rammah, Simulation of radiation shielding properties of glasses contain PbO. Radiat. Phys. Chem. 151, 239–252 (2018).CrossRef R. El-Mallawany, M.I. Sayyed, M.G. Dong, and Y.S. Rammah, Simulation of radiation shielding properties of glasses contain PbO. Radiat. Phys. Chem. 151, 239–252 (2018).CrossRef
Metadaten
Titel
A Closer Look at the Fabrication of Iron(II)-Doped Borate Glasses and their Structural, Optical, and Gamma-Ray Shielding Characteristics
verfasst von
Norah A. M. Alsaif
Haifa I. Alrebdi
Adel M. El-Refaey
R. A. Elsad
M. S. Shams
W. M. Almutairi
Y. S. Rammah
Publikationsdatum
06.10.2023
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 12/2023
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10729-8

Weitere Artikel der Ausgabe 12/2023

Journal of Electronic Materials 12/2023 Zur Ausgabe

Neuer Inhalt