Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 11/2013

01.11.2013

Low Temperature Synthesis of Negative Thermal Expansion Y2W3O12

verfasst von: Satyabati Das, Siddhartha Das, Karabi Das

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 11/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of variation of transmission ratio (r) in the pulverisette-4 (P4) ball-milling machine on the synthesis of Y2W3O12 is reported. Y2O3 and WO3 powders have been milled in a P4 planetary ball mill with different r values, i.e., −1.5, −1.75, −2, −2.25, −2.75, and −3, at a disk revolution speed of 300 rpm for 10 h with toluene as the process control agent. Differential thermal analysis results suggest that the reaction temperature of as-mixed powder is 1000 °C. It decreases down to 845 °C with an increase in the r value up to −2.25. However, a further increase in the r value results in an increase in the reaction temperature. The average particle size for different r values varies in similar manner and it is found to be around 65 nm for r = −2.25. XRD analysis of 10 h milled powders with the r value of −2.25, heat treated at different temperatures confirms the formation of Y2W3O12 at 800 °C. The low temperature synthesis leads to retention of finer grain size and hence, helps in good densification and sinterability. The above material shows a negative thermal expansion coefficient of the order of −7.1 × 10−6/°C in the temperature range 150-650 °C.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat J.S.O. Evans, T.A. Mary, and A.W. Sleight, Negative Thermal Expansion Materials, Phys. B Condens. Matter, 1997, 241, p 311–316CrossRef J.S.O. Evans, T.A. Mary, and A.W. Sleight, Negative Thermal Expansion Materials, Phys. B Condens. Matter, 1997, 241, p 311–316CrossRef
3.
Zurück zum Zitat J.S.O. Evans, Negative Thermal Expansion Materials, J. Chem. Soc. Dalton Trans., 1999, 19, p 3317–3326CrossRef J.S.O. Evans, Negative Thermal Expansion Materials, J. Chem. Soc. Dalton Trans., 1999, 19, p 3317–3326CrossRef
4.
Zurück zum Zitat T. Suzuki and A. Omote, Negative Thermal Expansion in (HfMg)(WO4)3, J. Am. Ceram. Soc., 2004, 87, p 1365–1367CrossRef T. Suzuki and A. Omote, Negative Thermal Expansion in (HfMg)(WO4)3, J. Am. Ceram. Soc., 2004, 87, p 1365–1367CrossRef
5.
Zurück zum Zitat T. Isobe, T. Umezome, Y. Kameshima, A. Nakajima, and K. Okada, Preparation and Properties of Negative Thermal Expansion Zr2WP2O12 Ceramics, Mater. Res. Bull., 2009, 44, p 2045–2049CrossRef T. Isobe, T. Umezome, Y. Kameshima, A. Nakajima, and K. Okada, Preparation and Properties of Negative Thermal Expansion Zr2WP2O12 Ceramics, Mater. Res. Bull., 2009, 44, p 2045–2049CrossRef
6.
Zurück zum Zitat X. Yang, X. Cheng, X. Yan, J. Yang, T. Fu, and J. Qiu, Synthesis of ZrO2/ZrW2O8 Composites with Low Thermal Expansion, Compos. Sci. Technol., 2007, 67, p 1167–1171CrossRef X. Yang, X. Cheng, X. Yan, J. Yang, T. Fu, and J. Qiu, Synthesis of ZrO2/ZrW2O8 Composites with Low Thermal Expansion, Compos. Sci. Technol., 2007, 67, p 1167–1171CrossRef
7.
Zurück zum Zitat D. Balch and D. Dunand, Copper-Zirconium Tungstate Composites Exhibiting Low and Negative Thermal Expansion Influenced by Reinforcement Phase Transformations, Metall. Mater. Trans. A, 2004, 35, p 1159–1165 D. Balch and D. Dunand, Copper-Zirconium Tungstate Composites Exhibiting Low and Negative Thermal Expansion Influenced by Reinforcement Phase Transformations, Metall. Mater. Trans. A, 2004, 35, p 1159–1165
8.
Zurück zum Zitat I. Yanase, M. Miyagi, and H. Kobayashi, Fabrication of Zero-Thermal-Expansion ZrSiO4/Y2W3O12 Sintered Body, J. Eur. Ceram. Soc., 2009, 29, p 3129–3134CrossRef I. Yanase, M. Miyagi, and H. Kobayashi, Fabrication of Zero-Thermal-Expansion ZrSiO4/Y2W3O12 Sintered Body, J. Eur. Ceram. Soc., 2009, 29, p 3129–3134CrossRef
9.
Zurück zum Zitat H. Watanabe, J. Tani, H. Kido, and K. Mizuuchi, Thermal Expansion and Mechanical Properties of Pure Magnesium Containing Zirconium Tungsten Phosphate Particles with Negative Thermal Expansion, Mater. Sci. Eng. A, 2008, 494, p 291–298CrossRef H. Watanabe, J. Tani, H. Kido, and K. Mizuuchi, Thermal Expansion and Mechanical Properties of Pure Magnesium Containing Zirconium Tungsten Phosphate Particles with Negative Thermal Expansion, Mater. Sci. Eng. A, 2008, 494, p 291–298CrossRef
10.
Zurück zum Zitat U. Kameswari, A.W. Sleight, and J.S.O. Evans, Rapid Synthesis of ZrW2O8 and Related Phases, and Structure Refinement of ZrWMoO8, Int. J. Inorg. Mater., 2000, 2, p 333–337CrossRef U. Kameswari, A.W. Sleight, and J.S.O. Evans, Rapid Synthesis of ZrW2O8 and Related Phases, and Structure Refinement of ZrWMoO8, Int. J. Inorg. Mater., 2000, 2, p 333–337CrossRef
11.
Zurück zum Zitat A. Grzechnik and W.A. Crichton, Structural Transformations in Cubic ZrMo2O8 at High Pressures and High Temperatures, Solid State Sci., 2002, 4, p 1137–1141CrossRef A. Grzechnik and W.A. Crichton, Structural Transformations in Cubic ZrMo2O8 at High Pressures and High Temperatures, Solid State Sci., 2002, 4, p 1137–1141CrossRef
12.
Zurück zum Zitat X. Sun, X. Cheng, J. Yang, and Q. Liu, Effect of Acids on the Morphology and Negative Thermal Expansion Analysis of ZrW2O8 Powders Prepared by the Hydrothermal Method, Ceram. Int., 2013, 39, p 165–170CrossRef X. Sun, X. Cheng, J. Yang, and Q. Liu, Effect of Acids on the Morphology and Negative Thermal Expansion Analysis of ZrW2O8 Powders Prepared by the Hydrothermal Method, Ceram. Int., 2013, 39, p 165–170CrossRef
13.
Zurück zum Zitat P.M. Forster and A.W. Sleight, Negative Thermal Expansion in Y2W3O12, Int. J. Inorg. Mater., 1999, 1, p 123–127CrossRef P.M. Forster and A.W. Sleight, Negative Thermal Expansion in Y2W3O12, Int. J. Inorg. Mater., 1999, 1, p 123–127CrossRef
14.
Zurück zum Zitat Q. Liu, J. Yang, X. Cheng, G. Liang, and X. Sun, Preparation and Characterization of Negative Thermal Expansion Sc2W3O12/Cu Core-Shell Composite, Ceram. Int., 2012, 38, p 541–545CrossRef Q. Liu, J. Yang, X. Cheng, G. Liang, and X. Sun, Preparation and Characterization of Negative Thermal Expansion Sc2W3O12/Cu Core-Shell Composite, Ceram. Int., 2012, 38, p 541–545CrossRef
15.
Zurück zum Zitat M.M. Wu, J. Peng, S.B. Han, Z.B. Hu, Y.T. Liu, and D.F. Chen, Phase Transition and Negative Thermal Expansion Properties of Sc2−x Cr x Mo3O12, Ceram. Int., 2012, 38, p 6525–6529CrossRef M.M. Wu, J. Peng, S.B. Han, Z.B. Hu, Y.T. Liu, and D.F. Chen, Phase Transition and Negative Thermal Expansion Properties of Sc2−x Cr x Mo3O12, Ceram. Int., 2012, 38, p 6525–6529CrossRef
16.
Zurück zum Zitat P.P. Sahoo, S. Sumithra, G. Madras, and T.N. Guru Row, Synthesis, Structure, Negative Thermal Expansion, and Photocatalytic Property of Mo Doped ZrV2O7, Inorg. Chem., 2011, 50, p 8774–8781CrossRef P.P. Sahoo, S. Sumithra, G. Madras, and T.N. Guru Row, Synthesis, Structure, Negative Thermal Expansion, and Photocatalytic Property of Mo Doped ZrV2O7, Inorg. Chem., 2011, 50, p 8774–8781CrossRef
17.
Zurück zum Zitat C. Turquat, C. Muller, E. Nigrelli, C. Leroux, J.L. Soubeyroux, and G. Nihoul, Structural Investigation of Temperature-Induced Phase Transitions in HfV2O7, Eur. Phys. J. Appl. Phys., 2000, 10, p 15–27CrossRef C. Turquat, C. Muller, E. Nigrelli, C. Leroux, J.L. Soubeyroux, and G. Nihoul, Structural Investigation of Temperature-Induced Phase Transitions in HfV2O7, Eur. Phys. J. Appl. Phys., 2000, 10, p 15–27CrossRef
18.
Zurück zum Zitat D.A. Woodcock, P. Lightfoot, and C. Ritter, Negative Thermal Expansion in Y2(WO4)3, J. Solid State Chem., 2000, 149, p 92–98CrossRef D.A. Woodcock, P. Lightfoot, and C. Ritter, Negative Thermal Expansion in Y2(WO4)3, J. Solid State Chem., 2000, 149, p 92–98CrossRef
19.
Zurück zum Zitat S. Sumithra and A.M. Umarji, Hygroscopicity and Bulk Thermal Expansion in Y2W3O12, Mater. Res. Bull., 2005, 40, p 167–176CrossRef S. Sumithra and A.M. Umarji, Hygroscopicity and Bulk Thermal Expansion in Y2W3O12, Mater. Res. Bull., 2005, 40, p 167–176CrossRef
20.
Zurück zum Zitat S.A. Hewitt and K.A. Kibble, Effects of Ball Milling Time on the Synthesis and Consolidation of Nanostructured WC-Co Composites, Int. J. Refract. Met. Hard Mater., 2009, 27, p 937–948CrossRef S.A. Hewitt and K.A. Kibble, Effects of Ball Milling Time on the Synthesis and Consolidation of Nanostructured WC-Co Composites, Int. J. Refract. Met. Hard Mater., 2009, 27, p 937–948CrossRef
21.
Zurück zum Zitat C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater Sci., 2001, 46, p 1–184CrossRef C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater Sci., 2001, 46, p 1–184CrossRef
22.
Zurück zum Zitat F.L. Zhang, M. Zhu, and C.Y. Wang, Parameters Optimization in the Planetary Ball Milling of Nanostructured Tungsten Carbide/Cobalt Powder, Int. J. Refract. Met. Hard Mater., 2008, 26, p 329–333CrossRef F.L. Zhang, M. Zhu, and C.Y. Wang, Parameters Optimization in the Planetary Ball Milling of Nanostructured Tungsten Carbide/Cobalt Powder, Int. J. Refract. Met. Hard Mater., 2008, 26, p 329–333CrossRef
23.
Zurück zum Zitat H.-C. Kang, D.-K. Jun, B. Jin, E.M. Jin, K.-H. Park, H.-B. Gu, and K.-W. Kim, Optimized Solid-State Synthesis of LiFePO4 Cathode Materials Using Ball-Milling, J. Power Sources, 2008, 179, p 340–346CrossRef H.-C. Kang, D.-K. Jun, B. Jin, E.M. Jin, K.-H. Park, H.-B. Gu, and K.-W. Kim, Optimized Solid-State Synthesis of LiFePO4 Cathode Materials Using Ball-Milling, J. Power Sources, 2008, 179, p 340–346CrossRef
24.
Zurück zum Zitat Z.-F. Fu, P. Liu, X.-M. Chen, J.-L. Ma, and H.-W. Zhang, Low-Temperature Synthesis of Mg4Nb2O9 Nanopowders by High-Energy Ball-Milling Method, J. Alloys Compd., 2010, 493, p 441–444CrossRef Z.-F. Fu, P. Liu, X.-M. Chen, J.-L. Ma, and H.-W. Zhang, Low-Temperature Synthesis of Mg4Nb2O9 Nanopowders by High-Energy Ball-Milling Method, J. Alloys Compd., 2010, 493, p 441–444CrossRef
25.
Zurück zum Zitat V. Berbenni, A. Marini, N.J. Welham, P. Galinetto, and M.C. Mozzati, The Effect of Mechanical Milling on the Solid State Reactions In the Barium Oxalate-Iron(III) Oxide System, J. Eur. Ceram. Soc., 2003, 23, p 179–187CrossRef V. Berbenni, A. Marini, N.J. Welham, P. Galinetto, and M.C. Mozzati, The Effect of Mechanical Milling on the Solid State Reactions In the Barium Oxalate-Iron(III) Oxide System, J. Eur. Ceram. Soc., 2003, 23, p 179–187CrossRef
26.
Zurück zum Zitat H. Mio, J. Kano, F. Saito, and K. Kaneko, Optimum Revolution and Rotational Directions and Their Speeds in Planetary Ball Milling, Int. J. Miner. Process., 2004, 74, p S85–S92CrossRef H. Mio, J. Kano, F. Saito, and K. Kaneko, Optimum Revolution and Rotational Directions and Their Speeds in Planetary Ball Milling, Int. J. Miner. Process., 2004, 74, p S85–S92CrossRef
27.
Zurück zum Zitat H. Mio, J. Kano, F. Saito, and K. Kaneko, Effects of Rotational Direction and Rotation-to-Revolution Speed Ratio in Planetary Ball Milling, Mater. Sci. Eng. A, 2002, 332, p 75–80CrossRef H. Mio, J. Kano, F. Saito, and K. Kaneko, Effects of Rotational Direction and Rotation-to-Revolution Speed Ratio in Planetary Ball Milling, Mater. Sci. Eng. A, 2002, 332, p 75–80CrossRef
28.
Zurück zum Zitat E. Avvakumov, M. Senna, and N. Kosova, Soft Mechanochemical Synthesis: A Basis for New Chemical Technologies, Kluwer Academic Publishers, New York, 2001, p 204 E. Avvakumov, M. Senna, and N. Kosova, Soft Mechanochemical Synthesis: A Basis for New Chemical Technologies, Kluwer Academic Publishers, New York, 2001, p 204
29.
Zurück zum Zitat T.N. Kol’tsova, X-ray Diffraction Study of Y2W3O12·3H2O, Inorg. Mater., 2001, 37, p 1175–1177CrossRef T.N. Kol’tsova, X-ray Diffraction Study of Y2W3O12·3H2O, Inorg. Mater., 2001, 37, p 1175–1177CrossRef
30.
Zurück zum Zitat S. Rosenkranz, S. Breitung-Faes, and A. Kwade, Experimental Investigations and Modelling of the Ball Motion in Planetary Ball Mills, Powder Technol., 2011, 212, p 224–230CrossRef S. Rosenkranz, S. Breitung-Faes, and A. Kwade, Experimental Investigations and Modelling of the Ball Motion in Planetary Ball Mills, Powder Technol., 2011, 212, p 224–230CrossRef
31.
Zurück zum Zitat N. Duan, U. Kameswari, and A.W. Sleight, Further Contraction of ZrW2O8, J. Am. Chem. Soc., 1999, 121, p 10432–10433CrossRef N. Duan, U. Kameswari, and A.W. Sleight, Further Contraction of ZrW2O8, J. Am. Chem. Soc., 1999, 121, p 10432–10433CrossRef
Metadaten
Titel
Low Temperature Synthesis of Negative Thermal Expansion Y2W3O12
verfasst von
Satyabati Das
Siddhartha Das
Karabi Das
Publikationsdatum
01.11.2013
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 11/2013
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-013-0652-6

Weitere Artikel der Ausgabe 11/2013

Journal of Materials Engineering and Performance 11/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.