Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 5/2015

01.05.2015

Hot Deformation and Dynamic Recrystallization of Ti-6Al-7Nb Biomedical Alloy in Single-Phase β Region

verfasst von: F. Pilehva, A. Zarei-Hanzaki, S. M. Fatemi-Varzaneh, A. R. Khalesian

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 5/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of this investigation is to evaluate the hot deformation behavior and critical conditions for onset of dynamic recrystallization in Ti-6Al-7Nb biomedical alloy. The effects of temperature and strain rate on the hot deformation behavior of Ti-6Al-7Nb alloy were studied by employing hot compression tests. The experiments were conducted at temperatures of 1050, 1100, and 1150 °C under strain rates of 0.0025, 0.025, and 0.25 s−1 up to a true strain of 0.65. The evolution of compressive flow stress during deformation of the experimental alloy in the single-phase β region was investigated. The obtained microstructures showed the occurrence of partial dynamic recrystallization along the prior grain boundaries, which was discussed relying on the continuous recrystallization process. Using the strain-hardening rate curves (/ versus σ), two characteristic parameters including the critical strain for DRX initiation (ε c) and the strain for peak stress (ε p) were identified. The normalized critical stress and strain for initiation of DRX were, respectively, found to be 0.9 and 0.67. True stress-true strain curves have been used to construct proper constitutive equations for the experimental alloy. The obtained activation energy for hot deformation was discussed considering the dominant restoration processes. Moreover, the flow stress was modeled for different strain levels, where good agreement with the experimental alloy was found.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Iijima, T. Yoneyama, H. Doi, H. Hamanaka, and N. Kurosaki, Wear Properties of Ti and Ti–6Al–7Nb Castings for Dental Prostheses, Biomaterials, 2003, 24, p 1519–1524CrossRef D. Iijima, T. Yoneyama, H. Doi, H. Hamanaka, and N. Kurosaki, Wear Properties of Ti and Ti–6Al–7Nb Castings for Dental Prostheses, Biomaterials, 2003, 24, p 1519–1524CrossRef
2.
Zurück zum Zitat K. Narita, M. Niinomi, M. Nakai, J. Hieda, and K. Oribe, Development of Thermo-mechanical Processing for Fabricating Highly Durable β-type Ti-Nb-Ta-Zr Rod for Use in Spinal Fixation Devices, J. Mech. Behav. Biomed. Mater., 2012, 9, p 207–216CrossRef K. Narita, M. Niinomi, M. Nakai, J. Hieda, and K. Oribe, Development of Thermo-mechanical Processing for Fabricating Highly Durable β-type Ti-Nb-Ta-Zr Rod for Use in Spinal Fixation Devices, J. Mech. Behav. Biomed. Mater., 2012, 9, p 207–216CrossRef
3.
Zurück zum Zitat M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review, Prog. Mater Sci., 2009, 54, p 397–425CrossRef M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review, Prog. Mater Sci., 2009, 54, p 397–425CrossRef
4.
Zurück zum Zitat G. He and M. Hagiwara, Ti Alloy Design Strategy for Biomedical Applications, Mater. Sci. Eng. C, 2006, 26, p 14–19CrossRef G. He and M. Hagiwara, Ti Alloy Design Strategy for Biomedical Applications, Mater. Sci. Eng. C, 2006, 26, p 14–19CrossRef
5.
Zurück zum Zitat M.F. Semlitsch, H. Weber, R.M. Streicher, and R. Schön, Joint Replacement Components Made of Hot-Forged and Surface-Treated Ti–6Al–7Nb Alloy, Biomaterials, 1992, 13(11), p 781–788CrossRef M.F. Semlitsch, H. Weber, R.M. Streicher, and R. Schön, Joint Replacement Components Made of Hot-Forged and Surface-Treated Ti–6Al–7Nb Alloy, Biomaterials, 1992, 13(11), p 781–788CrossRef
6.
Zurück zum Zitat D. Samantaray, S. Mandal, A.K. Bhaduri, S. Venugopal, and P.V. Sivaprasad, Analysis and Mathematical Modelling of Elevated Temperature Flow Behaviour of Austenitic Stainless Steels, Mater. Sci. Eng. A, 2011, 528, p 1937–1943CrossRef D. Samantaray, S. Mandal, A.K. Bhaduri, S. Venugopal, and P.V. Sivaprasad, Analysis and Mathematical Modelling of Elevated Temperature Flow Behaviour of Austenitic Stainless Steels, Mater. Sci. Eng. A, 2011, 528, p 1937–1943CrossRef
7.
Zurück zum Zitat N. Bontcheva, G. Petzov, and L. Parashkevova, Thermomechanical Modelling of Hot Extrusion of Al-alloys, Followed by Cooling on the Press, Comput. Mater. Sci., 2006, 38, p 83–89CrossRef N. Bontcheva, G. Petzov, and L. Parashkevova, Thermomechanical Modelling of Hot Extrusion of Al-alloys, Followed by Cooling on the Press, Comput. Mater. Sci., 2006, 38, p 83–89CrossRef
8.
Zurück zum Zitat Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759CrossRef Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759CrossRef
9.
Zurück zum Zitat Y.C. Lin and G. Liu, A New Mathematical Model for Predicting Flow Stress of Typical High-Strength Alloy Steel at Elevated High Temperature, Comput. Mater. Sci., 2010, 48, p 54–58CrossRef Y.C. Lin and G. Liu, A New Mathematical Model for Predicting Flow Stress of Typical High-Strength Alloy Steel at Elevated High Temperature, Comput. Mater. Sci., 2010, 48, p 54–58CrossRef
10.
Zurück zum Zitat N. Haghdadi, A. Zarei-Hanzaki, A.R. Khalesian, and H.R. Abedi, Artificial Neural Network Modeling to Predict the Hot Deformation Behavior of an A356 Aluminum Alloy, Mater. Des., 2013, 49, p 386–391CrossRef N. Haghdadi, A. Zarei-Hanzaki, A.R. Khalesian, and H.R. Abedi, Artificial Neural Network Modeling to Predict the Hot Deformation Behavior of an A356 Aluminum Alloy, Mater. Des., 2013, 49, p 386–391CrossRef
11.
Zurück zum Zitat C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14, p 1136–1138CrossRef C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14, p 1136–1138CrossRef
12.
Zurück zum Zitat A. Marandi, A. Zarei-Hanzaki, N. Haghdadi, and M. Eskandari, The prediction of Hot Deformation Behavior in Fe–21Mn–2.5 Si–1.5 Al Transformation-Twinning Induced Plasticity Steel, Mater. Sci. Eng. A, 2012, 554, p 72–78CrossRef A. Marandi, A. Zarei-Hanzaki, N. Haghdadi, and M. Eskandari, The prediction of Hot Deformation Behavior in Fe–21Mn–2.5 Si–1.5 Al Transformation-Twinning Induced Plasticity Steel, Mater. Sci. Eng. A, 2012, 554, p 72–78CrossRef
13.
Zurück zum Zitat H.Y. Li, Y.H. Li, D.D. Wei, J.J. Liu, and X.F. Wang, Constitutive Equation to Predict Elevated Temperature Flow Stress of V150 Grade Oil Casing Steel, Mater. Sci. Eng. A, 2011, 530, p 367–372CrossRef H.Y. Li, Y.H. Li, D.D. Wei, J.J. Liu, and X.F. Wang, Constitutive Equation to Predict Elevated Temperature Flow Stress of V150 Grade Oil Casing Steel, Mater. Sci. Eng. A, 2011, 530, p 367–372CrossRef
14.
Zurück zum Zitat H.Y. Li, D.D. Wei, J.D. Hu, Y.H. Li, and S.L. Chen, Constitutive Modeling for Hot Deformation Behavior of T24 Ferritic Steel, Comput. Mater. Sci., 2012, 53, p 425–430CrossRef H.Y. Li, D.D. Wei, J.D. Hu, Y.H. Li, and S.L. Chen, Constitutive Modeling for Hot Deformation Behavior of T24 Ferritic Steel, Comput. Mater. Sci., 2012, 53, p 425–430CrossRef
15.
Zurück zum Zitat M.A. Shafaat, H. Omidvar, and B. Fallah, Prediction of Hot Compression Flow Curves of Ti–6Al–4V Alloy in α + β Phase Region, Mater. Des., 2011, 32, p 4689–4695CrossRef M.A. Shafaat, H. Omidvar, and B. Fallah, Prediction of Hot Compression Flow Curves of Ti–6Al–4V Alloy in α + β Phase Region, Mater. Des., 2011, 32, p 4689–4695CrossRef
16.
Zurück zum Zitat J. Cai, F. Li, T. Liu, B. Chen, and M. He, Constitutive Equations for Elevated Temperature Flow Stress of Ti–6Al–4V Alloy Considering the Effect of Strain, Mater. Des., 2011, 32, p 1144–1151CrossRef J. Cai, F. Li, T. Liu, B. Chen, and M. He, Constitutive Equations for Elevated Temperature Flow Stress of Ti–6Al–4V Alloy Considering the Effect of Strain, Mater. Des., 2011, 32, p 1144–1151CrossRef
17.
Zurück zum Zitat R. Ding, Z.X. Guo, and A. Wilson, Microstructural Evolution of a Ti – 6Al – 4V Alloy During Thermomechanical Processing, Mater. Sci. Eng. A, 2002, 327, p 233–245CrossRef R. Ding, Z.X. Guo, and A. Wilson, Microstructural Evolution of a Ti – 6Al – 4V Alloy During Thermomechanical Processing, Mater. Sci. Eng. A, 2002, 327, p 233–245CrossRef
18.
Zurück zum Zitat W. Yu, J. Li, and J. Luo, Effect of Processing Parameters on Microstructure and Mechanical Properties in High Temperature Deformation of Ti-6Al-4V Alloy, Rare. Metal. Mater. Eng., 2009, 38(1), p 19–24CrossRef W. Yu, J. Li, and J. Luo, Effect of Processing Parameters on Microstructure and Mechanical Properties in High Temperature Deformation of Ti-6Al-4V Alloy, Rare. Metal. Mater. Eng., 2009, 38(1), p 19–24CrossRef
19.
Zurück zum Zitat S. Roy and S. Suwas, The Influence of Temperature and Strain Rate on the Deformation Response and Microstructural Evolution During Hot Compression of a Titanium Alloy Ti–6Al–4V–0.1B, J. Alloy Compd., 2013, 548, p 110–125CrossRef S. Roy and S. Suwas, The Influence of Temperature and Strain Rate on the Deformation Response and Microstructural Evolution During Hot Compression of a Titanium Alloy Ti–6Al–4V–0.1B, J. Alloy Compd., 2013, 548, p 110–125CrossRef
20.
Zurück zum Zitat W.F. Cui, Z. Jin, A.H. Guo, and L. Zhou, High Temperature Deformation Behavior of α + β Type Biomedical Titanium Alloy Ti–6Al–7Nb, Mater. Sci. Eng. A, 2009, 499, p 252–256CrossRef W.F. Cui, Z. Jin, A.H. Guo, and L. Zhou, High Temperature Deformation Behavior of α + β Type Biomedical Titanium Alloy Ti–6Al–7Nb, Mater. Sci. Eng. A, 2009, 499, p 252–256CrossRef
21.
Zurück zum Zitat T. Akahori, M. Niinomi, K.I. Fukunaga, and I. Inagaki, Effects of Microstructure on the Short Fatigue Crack Initiation and Propagation Characteristics of Biomedical α/β Titanium Alloys, Metall. Mater. Trans. A, 2000, 31, p 1949–1958CrossRef T. Akahori, M. Niinomi, K.I. Fukunaga, and I. Inagaki, Effects of Microstructure on the Short Fatigue Crack Initiation and Propagation Characteristics of Biomedical α/β Titanium Alloys, Metall. Mater. Trans. A, 2000, 31, p 1949–1958CrossRef
22.
Zurück zum Zitat E. Poliak and J. Jonas, A One-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 1996, 44, p 127–136CrossRef E. Poliak and J. Jonas, A One-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 1996, 44, p 127–136CrossRef
23.
Zurück zum Zitat H.J. McQueen, The Discovery of the Dynamic Restoration Mechanisms in Hot Working, Met. Forum (Australia), 1981, 4, p 81–91 H.J. McQueen, The Discovery of the Dynamic Restoration Mechanisms in Hot Working, Met. Forum (Australia), 1981, 4, p 81–91
24.
Zurück zum Zitat H. Mirzadeh, J.M. Cabrera, and A. Najafizadeh, Modeling and Prediction of Hot Deformation Flow Curves, Metall. Mater. Trans. A, 2012, 43A, p 108–123CrossRef H. Mirzadeh, J.M. Cabrera, and A. Najafizadeh, Modeling and Prediction of Hot Deformation Flow Curves, Metall. Mater. Trans. A, 2012, 43A, p 108–123CrossRef
25.
Zurück zum Zitat I. Weiss and S.L. Semiatin, Thermomechanical Processing of Beta Titanium Alloys—An Overview, Mater. Sci. Eng. A, 1998, 243, p 46–65CrossRef I. Weiss and S.L. Semiatin, Thermomechanical Processing of Beta Titanium Alloys—An Overview, Mater. Sci. Eng. A, 1998, 243, p 46–65CrossRef
26.
Zurück zum Zitat W. Jia, W. Zeng, J. Liu, Y. Zhou, and Q. Wang, On the Influence of Processing Parameters on Microstructural Evolution of a Near Alpha Titanium Alloy, Mater. Sci. Eng. A, 2011, 530, p 135–143CrossRef W. Jia, W. Zeng, J. Liu, Y. Zhou, and Q. Wang, On the Influence of Processing Parameters on Microstructural Evolution of a Near Alpha Titanium Alloy, Mater. Sci. Eng. A, 2011, 530, p 135–143CrossRef
27.
Zurück zum Zitat I. Weiss and F.H. Froes, Titanium ‘84: Science and Technology, G. Lütjering, U. Zwicker, and W. Bunk, Ed., Deutsche Gesellschaft fur Metallkunde E.V, Oberursel, 1985, p 499–506 I. Weiss and F.H. Froes, Titanium ‘84: Science and Technology, G. Lütjering, U. Zwicker, and W. Bunk, Ed., Deutsche Gesellschaft fur Metallkunde E.V, Oberursel, 1985, p 499–506
28.
Zurück zum Zitat F. Warchomicka, C. Poletti, and M. Stockinger, Study of the Hot Deformation Behaviour in Ti–5Al–5Mo–5V–3Cr–1Zr, Mater. Sci. Eng. A, 2011, 528, p 8277–8285CrossRef F. Warchomicka, C. Poletti, and M. Stockinger, Study of the Hot Deformation Behaviour in Ti–5Al–5Mo–5V–3Cr–1Zr, Mater. Sci. Eng. A, 2011, 528, p 8277–8285CrossRef
29.
Zurück zum Zitat A. Najafizadeh and J.J. Jonas, Predicting the Critical Stress for Initiation of Dynamic Recrystallization, ISI. J. Int., 2006, 46, p 1679–1684CrossRef A. Najafizadeh and J.J. Jonas, Predicting the Critical Stress for Initiation of Dynamic Recrystallization, ISI. J. Int., 2006, 46, p 1679–1684CrossRef
30.
Zurück zum Zitat G. Quan, D. Wu, G. Luo, Y. Xia, J. Zhou, Q. Liu, and L. Gao, Dynamic Recrystallization Kinetics in α Phase of as-Cast Ti–6Al–2Zr–1Mo–1 V Alloy During Compression at Different Temperatures and Strain Rates, Mater. Sci. Eng. A, 2014, 589, p 23–33CrossRef G. Quan, D. Wu, G. Luo, Y. Xia, J. Zhou, Q. Liu, and L. Gao, Dynamic Recrystallization Kinetics in α Phase of as-Cast Ti–6Al–2Zr–1Mo–1 V Alloy During Compression at Different Temperatures and Strain Rates, Mater. Sci. Eng. A, 2014, 589, p 23–33CrossRef
31.
Zurück zum Zitat Y. Han, W. Zeng, Y. Qi, and Y. Zhao, Optimization of Forging Process Parameters of Ti600 Alloy by Using Processing Map, Mater. Sci. Eng. A, 2011, 529, p 393–400CrossRef Y. Han, W. Zeng, Y. Qi, and Y. Zhao, Optimization of Forging Process Parameters of Ti600 Alloy by Using Processing Map, Mater. Sci. Eng. A, 2011, 529, p 393–400CrossRef
32.
Zurück zum Zitat W. Jia, W. Zeng, Y. Zhou, J. Liu, and Q. Wang, High-Temperature Deformation Behavior of Ti60 Titanium Alloy, Mater. Sci. Eng. A, 2011, 528, p 4068–4074CrossRef W. Jia, W. Zeng, Y. Zhou, J. Liu, and Q. Wang, High-Temperature Deformation Behavior of Ti60 Titanium Alloy, Mater. Sci. Eng. A, 2011, 528, p 4068–4074CrossRef
33.
Zurück zum Zitat X.G. Fan, H. Yang, and P.F. Gao, Deformation Behavior and Microstructure Evolution in Multistage Hot Working of TA15 Titanium Alloy: on the Role Of Recrystallization, J. Mater. Sci., 2011, 46, p 6018–6028CrossRef X.G. Fan, H. Yang, and P.F. Gao, Deformation Behavior and Microstructure Evolution in Multistage Hot Working of TA15 Titanium Alloy: on the Role Of Recrystallization, J. Mater. Sci., 2011, 46, p 6018–6028CrossRef
34.
Zurück zum Zitat J. Zhang, H. Di, H. Wang, K. Mao, T. Ma, and Y. Cao, Hot Deformation Behavior of Ti-15-3 Titanium Alloy: A Study Using Processing Maps, Activation Energy Map, and Zener-Hollomon Parameter Map, J. Mater. Sci., 2012, 47, p 4000–4011CrossRef J. Zhang, H. Di, H. Wang, K. Mao, T. Ma, and Y. Cao, Hot Deformation Behavior of Ti-15-3 Titanium Alloy: A Study Using Processing Maps, Activation Energy Map, and Zener-Hollomon Parameter Map, J. Mater. Sci., 2012, 47, p 4000–4011CrossRef
35.
Zurück zum Zitat J. Luo, M. Li, H. Li, and W. Yu, Effect of the Strain on the Deformation Behavior of Isothermally Compressed Ti–6Al–4V Alloy, Mater. Sci. Eng. A, 2009, 505, p 88–95CrossRef J. Luo, M. Li, H. Li, and W. Yu, Effect of the Strain on the Deformation Behavior of Isothermally Compressed Ti–6Al–4V Alloy, Mater. Sci. Eng. A, 2009, 505, p 88–95CrossRef
36.
Zurück zum Zitat S.M. Abbasi, M. Morakkabati, A.H. Sheikhali, and A. Momeni, Hot Deformation Behavior of Beta Titanium Ti-13V-11Cr-3Al Alloy, Metall. Mater. Trans. A, 2014, 45A, p 5201–5211CrossRef S.M. Abbasi, M. Morakkabati, A.H. Sheikhali, and A. Momeni, Hot Deformation Behavior of Beta Titanium Ti-13V-11Cr-3Al Alloy, Metall. Mater. Trans. A, 2014, 45A, p 5201–5211CrossRef
37.
Zurück zum Zitat R.A. Mulford and U.F. Kocks, New Observations on the Mechanisms of Dynamic Strain Aging and of Jerky Flow, Acta Metall., 1979, 27, p 1125–1134CrossRef R.A. Mulford and U.F. Kocks, New Observations on the Mechanisms of Dynamic Strain Aging and of Jerky Flow, Acta Metall., 1979, 27, p 1125–1134CrossRef
38.
Zurück zum Zitat F. Pilehva, A. Zarei-Hanzaki, M. Ghambari, and H.R. Abedi, Flow Behavior Modeling of a Ti–6Al–7Nb Biomedical Alloy During Manufacturing at Elevated Temperatures, Mater. Des., 2013, 51, p 457–465CrossRef F. Pilehva, A. Zarei-Hanzaki, M. Ghambari, and H.R. Abedi, Flow Behavior Modeling of a Ti–6Al–7Nb Biomedical Alloy During Manufacturing at Elevated Temperatures, Mater. Des., 2013, 51, p 457–465CrossRef
39.
Zurück zum Zitat N. Haghdadi, A. Zarei-Hanzaki, and H.R. Abedi, The Flow Behavior Modeling of Cast A356 Aluminum Alloy at Elevated Temperatures Considering the Effect of Strain, Mater. Sci. Eng. A, 2012, 535, p 252–257CrossRef N. Haghdadi, A. Zarei-Hanzaki, and H.R. Abedi, The Flow Behavior Modeling of Cast A356 Aluminum Alloy at Elevated Temperatures Considering the Effect of Strain, Mater. Sci. Eng. A, 2012, 535, p 252–257CrossRef
40.
Zurück zum Zitat D. Samantaray, S. Mandal, and A.K. Bhaduri, Constitutive Analysis to Predict High-Temperature Flow Stress in Modified 9Cr–1Mo (P91) Steel, Mater. Des., 2010, 31, p 981–984CrossRef D. Samantaray, S. Mandal, and A.K. Bhaduri, Constitutive Analysis to Predict High-Temperature Flow Stress in Modified 9Cr–1Mo (P91) Steel, Mater. Des., 2010, 31, p 981–984CrossRef
Metadaten
Titel
Hot Deformation and Dynamic Recrystallization of Ti-6Al-7Nb Biomedical Alloy in Single-Phase β Region
verfasst von
F. Pilehva
A. Zarei-Hanzaki
S. M. Fatemi-Varzaneh
A. R. Khalesian
Publikationsdatum
01.05.2015
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 5/2015
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-015-1468-3

Weitere Artikel der Ausgabe 5/2015

Journal of Materials Engineering and Performance 5/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.