Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2016

21.07.2016

Evaluating Fracture Toughness of Rolled Zircaloy-2 at Different Temperatures Using XFEM

verfasst von: Sunkulp Goel, Nikhil Kumar, Devasri Fuloria, R. Jayaganthan, I. V. Singh, D. Srivastava, G. K. Dey, N. Saibaba

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fracture toughness and mechanical properties of the zircaloy-2 processed by rolling at different temperatures have been investigated, and simulations have been performed using extended finite element method (XFEM). The solutionized alloy was rolled at different temperatures for different thickness reductions (25–85%). Fracture toughness has been investigated by compact tension test. The improved fracture toughness of the rolled zircaloy-2 samples is due to high dislocation density. SEM image of the fractured surface shows the reduction in dimple sizes with the increase in dislocation density due to the formation of microvoids as a result of severe strain induced during rolling. Compact tension test, edge crack, center crack and three-point bend specimen simulations have been performed by XFEM. In XFEM, the cracks are not a part of finite element mesh and are modeled by adding enrichment function in the standard finite element displacement approximation. The XFEM results obtained for compact tension test have been found to be in good agreement with the experiment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Edsinger, J.H. Davies, and R.B. Adamson, Degraded Fuel Cladding Fractography and Fracture Behaviour, Proceedings of the 12th International Symposium on Zirconium in Nuclear Industry, ASTM STP 1354, G.P. Sabol and G.D. Moan, Ed., American Society for Testing and Materials, West Conshohocken, PA, 2000, p 316–339 K. Edsinger, J.H. Davies, and R.B. Adamson, Degraded Fuel Cladding Fractography and Fracture Behaviour, Proceedings of the 12th International Symposium on Zirconium in Nuclear Industry, ASTM STP 1354, G.P. Sabol and G.D. Moan, Ed., American Society for Testing and Materials, West Conshohocken, PA, 2000, p 316–339
2.
Zurück zum Zitat J. Bertsch and W. Hoffelner, Crack Resistance Curve Determination of Tube Cladding Material, J. Nucl. Mater., 2006, 352, p 116–125CrossRef J. Bertsch and W. Hoffelner, Crack Resistance Curve Determination of Tube Cladding Material, J. Nucl. Mater., 2006, 352, p 116–125CrossRef
3.
Zurück zum Zitat V. Grigoriev, B. Josefsson, and B. Rosborg, Fracture Toughness of Zircaloy Cladding Tubes, Proceedings of the 11th International Symposium on Zirconium in Nuclear Industry, ASTM STP 1295, E.R. Bradely, and G.P. Sabol, Ed., 1996, p 431–447 V. Grigoriev, B. Josefsson, and B. Rosborg, Fracture Toughness of Zircaloy Cladding Tubes, Proceedings of the 11th International Symposium on Zirconium in Nuclear Industry, ASTM STP 1295, E.R. Bradely, and G.P. Sabol, Ed., 1996, p 431–447
4.
Zurück zum Zitat M. Li, D. Guo, T. Ma, G. Zhang, Y. Shi, and X. Zhang, High Fracture Toughness in a Hierarchical Nanostructured Zirconium, Mater. Sci. Eng. A, 2014, 606, p 330–333CrossRef M. Li, D. Guo, T. Ma, G. Zhang, Y. Shi, and X. Zhang, High Fracture Toughness in a Hierarchical Nanostructured Zirconium, Mater. Sci. Eng. A, 2014, 606, p 330–333CrossRef
5.
Zurück zum Zitat T. Shimokawa, M. Tanaka, K. Kinoshita, and K. Higashida, Roles of Grain Boundaries in Improving Fracture Toughness of Ultrafine-Grained Metals, Phys. Rev. B, 2011, 83, p 214113CrossRef T. Shimokawa, M. Tanaka, K. Kinoshita, and K. Higashida, Roles of Grain Boundaries in Improving Fracture Toughness of Ultrafine-Grained Metals, Phys. Rev. B, 2011, 83, p 214113CrossRef
6.
Zurück zum Zitat L. Zhu and Z. Lu, Modelling the Plastic Deformation of Nanostructured Metals with Bimodal Grain Size Distribution, Int. J. Plast., 2012, 30–31, p 166–184CrossRef L. Zhu and Z. Lu, Modelling the Plastic Deformation of Nanostructured Metals with Bimodal Grain Size Distribution, Int. J. Plast., 2012, 30–31, p 166–184CrossRef
7.
Zurück zum Zitat A.D. Nurse and E.A. Patterson, A Photoelastic Technique to Predict The Direction of Edge Crack Extension Using Blunt Cracks, Int. J. Mech. Sci., 1990, 32, p 253–264CrossRef A.D. Nurse and E.A. Patterson, A Photoelastic Technique to Predict The Direction of Edge Crack Extension Using Blunt Cracks, Int. J. Mech. Sci., 1990, 32, p 253–264CrossRef
8.
Zurück zum Zitat S.K. Maiti and D.P. Patil, Detection of Multiple Cracks Using Frequency Measurements, Eng. Fract. Mech., 2003, 70, p 1553–1572CrossRef S.K. Maiti and D.P. Patil, Detection of Multiple Cracks Using Frequency Measurements, Eng. Fract. Mech., 2003, 70, p 1553–1572CrossRef
9.
Zurück zum Zitat A. Vadiraj and M. Kamaraj, Damage Characterization of Unmodified and Surface Modified Medical Grade Titanium Alloys Under Fretting Fatigue Condition, Mater. Sci. Eng. A, 2006, 416, p 253–260CrossRef A. Vadiraj and M. Kamaraj, Damage Characterization of Unmodified and Surface Modified Medical Grade Titanium Alloys Under Fretting Fatigue Condition, Mater. Sci. Eng. A, 2006, 416, p 253–260CrossRef
10.
Zurück zum Zitat A. Vadiraj and M. Kamaraj, Characterization of Fretting Fatigue Damage of PVD TiN Coated Biomedical Titanium Alloys, Surf. Coat. Technol., 2006, 200, p 4538–4542CrossRef A. Vadiraj and M. Kamaraj, Characterization of Fretting Fatigue Damage of PVD TiN Coated Biomedical Titanium Alloys, Surf. Coat. Technol., 2006, 200, p 4538–4542CrossRef
11.
Zurück zum Zitat A.K. Bind, R.N. Singh, S. Sunil, and H.K. Khandelwal, Comparison of J-Parameters of Cold Worked and Stress Relieved Zr-2.5Nb Pressure Tube Alloy Determined Using Load Normalization and Direct Current Potential Drop Technique, Eng. Fract. Mech., 2013, 105, p 200–210CrossRef A.K. Bind, R.N. Singh, S. Sunil, and H.K. Khandelwal, Comparison of J-Parameters of Cold Worked and Stress Relieved Zr-2.5Nb Pressure Tube Alloy Determined Using Load Normalization and Direct Current Potential Drop Technique, Eng. Fract. Mech., 2013, 105, p 200–210CrossRef
12.
Zurück zum Zitat S.P. Singh, S. Bhattacharya, and D.K. Sehgal, Evaluation of High Temperature Mechanical Strength of Cr-Mo Grade Steel Through Small Punch Test Technique, Eng. Fail. Anal., 2014, 39, p 207–220CrossRef S.P. Singh, S. Bhattacharya, and D.K. Sehgal, Evaluation of High Temperature Mechanical Strength of Cr-Mo Grade Steel Through Small Punch Test Technique, Eng. Fail. Anal., 2014, 39, p 207–220CrossRef
13.
Zurück zum Zitat A. Choubey, D.K. Sehgal, and N. Tandon, Finite Element Analysis of Vessels to Study Changes in Natural Frequencies due to Cracks, Int. J. Press. Vessels Pip., 2006, 83, p 181–187CrossRef A. Choubey, D.K. Sehgal, and N. Tandon, Finite Element Analysis of Vessels to Study Changes in Natural Frequencies due to Cracks, Int. J. Press. Vessels Pip., 2006, 83, p 181–187CrossRef
14.
Zurück zum Zitat S. Zhong and S.O. Oyadiji, Crack Detection in Simply Supported Beams Without Baseline Modal Parameters by Stationary Wavelet Transform, Mech. Syst. Signal Process., 2007, 21, p 1853–1884CrossRef S. Zhong and S.O. Oyadiji, Crack Detection in Simply Supported Beams Without Baseline Modal Parameters by Stationary Wavelet Transform, Mech. Syst. Signal Process., 2007, 21, p 1853–1884CrossRef
15.
Zurück zum Zitat K. Chung, F. Barlat, J.W. Yoon, O. Richmond, J.C. Brem, and D.J. Lege, Yield and Strain Rate Potentials for Aluminum Alloy Sheet Forming Design, Met. Mater., 1998, 4, p 931–938CrossRef K. Chung, F. Barlat, J.W. Yoon, O. Richmond, J.C. Brem, and D.J. Lege, Yield and Strain Rate Potentials for Aluminum Alloy Sheet Forming Design, Met. Mater., 1998, 4, p 931–938CrossRef
16.
Zurück zum Zitat J.W. Yoon, F. Barlat, and R.E. Dick, Plane Stress Yield Function for Aluminum Alloy Sheet—Part II: FE Formulation and Its Implementation, Int. J. Plast., 2004, 20, p 495–522CrossRef J.W. Yoon, F. Barlat, and R.E. Dick, Plane Stress Yield Function for Aluminum Alloy Sheet—Part II: FE Formulation and Its Implementation, Int. J. Plast., 2004, 20, p 495–522CrossRef
17.
Zurück zum Zitat M.K. Samal, G. Sanyal, and J.K. Chakravartty, An Experimental and Numerical Study of the Fracture Behaviour of Tubular Specimens in a Pin-Loading-Tension Set-Up, J Mech Eng Sci, 2010, 224, p 1–12CrossRef M.K. Samal, G. Sanyal, and J.K. Chakravartty, An Experimental and Numerical Study of the Fracture Behaviour of Tubular Specimens in a Pin-Loading-Tension Set-Up, J Mech Eng Sci, 2010, 224, p 1–12CrossRef
18.
Zurück zum Zitat G. Sanyal and M.K. Samal, Fracture Behavior of Thin-Walled Zircaloy Fuel Clad Tubes of Indian Pressurized Heavy Water Reactor, Int. J. Fract., 2012, 173, p 175–188CrossRef G. Sanyal and M.K. Samal, Fracture Behavior of Thin-Walled Zircaloy Fuel Clad Tubes of Indian Pressurized Heavy Water Reactor, Int. J. Fract., 2012, 173, p 175–188CrossRef
19.
Zurück zum Zitat T. Belytschko and T. Black, Elastic Crack Growth in Finite Elements with Minimal Remeshing, Int. J. Numer. Methods Eng., 1999, 45, p 601–620CrossRef T. Belytschko and T. Black, Elastic Crack Growth in Finite Elements with Minimal Remeshing, Int. J. Numer. Methods Eng., 1999, 45, p 601–620CrossRef
20.
Zurück zum Zitat N. Moës, J. Dolbow, and T. Belytschko, A Finite Element Method for Crack Growth Without Remeshing, Int. J. Numer. Methods Eng., 1999, 46, p 131–150CrossRef N. Moës, J. Dolbow, and T. Belytschko, A Finite Element Method for Crack Growth Without Remeshing, Int. J. Numer. Methods Eng., 1999, 46, p 131–150CrossRef
21.
Zurück zum Zitat J.E. Dolbow, “An Extended Finite Element Method with Discontinuous Enrichment for Applied Mechanics”. PhD dissertation, Theoretical and Applied Mechanics, Northwestern University, USA, 1999 J.E. Dolbow, “An Extended Finite Element Method with Discontinuous Enrichment for Applied Mechanics”. PhD dissertation, Theoretical and Applied Mechanics, Northwestern University, USA, 1999
22.
Zurück zum Zitat N. Sukumar, D.J. Srolovitz, T.J. Baker, and J.H. Prevost, Brittle Fracture in Polycrystalline Microstructures with the Extended Finite Element Method, Int. J. Numer. Methods Eng., 2003, 56, p 2015–2037CrossRef N. Sukumar, D.J. Srolovitz, T.J. Baker, and J.H. Prevost, Brittle Fracture in Polycrystalline Microstructures with the Extended Finite Element Method, Int. J. Numer. Methods Eng., 2003, 56, p 2015–2037CrossRef
23.
Zurück zum Zitat P. Dumstorff and G. Meschke, Finite Element Modelling of Cracks Based on the Partition of Unity Method, Proc. Appl. Math. Mech., 2003, 2, p 226–227CrossRef P. Dumstorff and G. Meschke, Finite Element Modelling of Cracks Based on the Partition of Unity Method, Proc. Appl. Math. Mech., 2003, 2, p 226–227CrossRef
24.
Zurück zum Zitat B. Patzak and M. Jirásek, Process Zone Resolution by Extended Finite Elements, Eng. Fract. Mech., 2003, 70, p 957–977CrossRef B. Patzak and M. Jirásek, Process Zone Resolution by Extended Finite Elements, Eng. Fract. Mech., 2003, 70, p 957–977CrossRef
25.
Zurück zum Zitat K. Sharma, T.Q. Bui, Ch Zhang, and R.R. Bhargava, Analysis of a Subinterface Crack in Piezoelectric Bimaterials with the Extended Finite Element Method, Eng. Fract. Mech., 2013, 104, p 114–139CrossRef K. Sharma, T.Q. Bui, Ch Zhang, and R.R. Bhargava, Analysis of a Subinterface Crack in Piezoelectric Bimaterials with the Extended Finite Element Method, Eng. Fract. Mech., 2013, 104, p 114–139CrossRef
26.
Zurück zum Zitat P. Liu, T. Yu, T.Q. Bui, C. Zhang, Y. Xu, and C.W. Lim, Transient Thermal Shock Fracture Analysis of Functionally Graded Piezoelectric Materials by the Extended Finite Element Method, Int. J. Solids Struct., 2014, 51, p 2167–2182CrossRef P. Liu, T. Yu, T.Q. Bui, C. Zhang, Y. Xu, and C.W. Lim, Transient Thermal Shock Fracture Analysis of Functionally Graded Piezoelectric Materials by the Extended Finite Element Method, Int. J. Solids Struct., 2014, 51, p 2167–2182CrossRef
27.
Zurück zum Zitat H. Nguyen-Vinh, I. Bakar, M.A. Msekh, J.-H. Song, J. Muthu, G. Zi, P. Le, S. Bordas, R. Simpson, S. Natararajan, T. Lahmer, and T. Rabczuk, Extended Finite Element Method for Dynamic Fracture of Piezo-Electric Materials, Eng. Fract. Mech., 2012, 92, p 19–31CrossRef H. Nguyen-Vinh, I. Bakar, M.A. Msekh, J.-H. Song, J. Muthu, G. Zi, P. Le, S. Bordas, R. Simpson, S. Natararajan, T. Lahmer, and T. Rabczuk, Extended Finite Element Method for Dynamic Fracture of Piezo-Electric Materials, Eng. Fract. Mech., 2012, 92, p 19–31CrossRef
28.
Zurück zum Zitat H. Talebi, M. Silani, S.P.A. Bordas, P. Kerfriden, and T. Rabczuk, Molecular Dynamics/XFEM Coupling by a Three-Dimensional Extended Bridging Domain with Applications to Dynamic Brittle Fracture, Int. J. Multiscale Comput. Eng., 2013, 11, p 527–541CrossRef H. Talebi, M. Silani, S.P.A. Bordas, P. Kerfriden, and T. Rabczuk, Molecular Dynamics/XFEM Coupling by a Three-Dimensional Extended Bridging Domain with Applications to Dynamic Brittle Fracture, Int. J. Multiscale Comput. Eng., 2013, 11, p 527–541CrossRef
29.
Zurück zum Zitat S. Goel, N. Keskar, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, and N. Saibaba, Mechanical Behaviour and Microstructural Characterizations of Ultrafine Grained Zircaloy-2 Processed by Cryorolling, Mater. Sci. Eng. A, 2014, 603, p 23–29CrossRef S. Goel, N. Keskar, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, and N. Saibaba, Mechanical Behaviour and Microstructural Characterizations of Ultrafine Grained Zircaloy-2 Processed by Cryorolling, Mater. Sci. Eng. A, 2014, 603, p 23–29CrossRef
30.
Zurück zum Zitat S. Goel, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, and N. Saibaba, Mechanical and Microstructural Characterizations of Ultrafine Grained Zircaloy-2 Produced by Room Temperature Rolling, Mater. Des., 2014, 55, p 612–618CrossRef S. Goel, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, and N. Saibaba, Mechanical and Microstructural Characterizations of Ultrafine Grained Zircaloy-2 Produced by Room Temperature Rolling, Mater. Des., 2014, 55, p 612–618CrossRef
31.
Zurück zum Zitat S. Goel, N. Keskar, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, and N. Saibaba, Development of Ultrafine Grained Zircaloy-2 by Room Temperature Cross Rolling, J. Mater. Eng. Perform., 2014, 24, p 609–617CrossRef S. Goel, N. Keskar, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, and N. Saibaba, Development of Ultrafine Grained Zircaloy-2 by Room Temperature Cross Rolling, J. Mater. Eng. Perform., 2014, 24, p 609–617CrossRef
32.
Zurück zum Zitat S. Goel, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, and N. Saibaba, Texture Evolution and Ultrafine Grain Formation in Cross Cryo Rolled Zircaloy-2, Acta Metall. Sin., 2015, 28, p 837–846CrossRef S. Goel, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, and N. Saibaba, Texture Evolution and Ultrafine Grain Formation in Cross Cryo Rolled Zircaloy-2, Acta Metall. Sin., 2015, 28, p 837–846CrossRef
33.
Zurück zum Zitat S. Goel, N. Keskar, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, S.K. Jha, and N. Saibaba, Texture and Mechanical Behavior of Zircaloy-2 Rolled at Different Temperatures, J. Mater. Eng. Perform., 2014, 24, p 618–625CrossRef S. Goel, N. Keskar, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, S.K. Jha, and N. Saibaba, Texture and Mechanical Behavior of Zircaloy-2 Rolled at Different Temperatures, J. Mater. Eng. Perform., 2014, 24, p 618–625CrossRef
34.
Zurück zum Zitat S. Goel, K. Gaurav, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, and N. Saibaba, Experimental Evaluation of Mechanical Properties and Fracture-Fatigue Simulation of Cryo- and Room-Temperature-Rolled Zircaloy-2, Int. J. Microstruct. Mater. Prop., 2014, 9, p 120–135 S. Goel, K. Gaurav, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, and N. Saibaba, Experimental Evaluation of Mechanical Properties and Fracture-Fatigue Simulation of Cryo- and Room-Temperature-Rolled Zircaloy-2, Int. J. Microstruct. Mater. Prop., 2014, 9, p 120–135
35.
Zurück zum Zitat D. Fuloria, S. Goel, R. Jayaganthan, D. Srivastava, G.K. Dey, and N. Saibaba, Mechanical Properties and Microstructural Evolution of Ultrafine Grained Zircaloy-4 Processed Through Multiaxial Forging at Cryogenic Temperature, Trans. Nonferr. Mater. Soc. China, 2014, 25, p 2221–2229CrossRef D. Fuloria, S. Goel, R. Jayaganthan, D. Srivastava, G.K. Dey, and N. Saibaba, Mechanical Properties and Microstructural Evolution of Ultrafine Grained Zircaloy-4 Processed Through Multiaxial Forging at Cryogenic Temperature, Trans. Nonferr. Mater. Soc. China, 2014, 25, p 2221–2229CrossRef
36.
Zurück zum Zitat D. Guo, M. Li, Y. Shi, Z. Zhang, T. Ma, H. Zhang, and X. Zhang, Simultaneously Enhancing the Ductility and Strength of Cryorolled Zr Via Tailoring Dislocation Configurations, Mater. Sci. Eng. A, 2012, 558, p 611–615CrossRef D. Guo, M. Li, Y. Shi, Z. Zhang, T. Ma, H. Zhang, and X. Zhang, Simultaneously Enhancing the Ductility and Strength of Cryorolled Zr Via Tailoring Dislocation Configurations, Mater. Sci. Eng. A, 2012, 558, p 611–615CrossRef
37.
Zurück zum Zitat D. Guo, M. Li, Y. Shi, Z. Zhang, H. Zhang, X. Liu, and X. Zhang, Effect of Strain Rate on Microstructure Evolutions and Mechanical Properties of Cryorolled Zr Upon Annealing, Mater. Lett., 2012, 66, p 305–307CrossRef D. Guo, M. Li, Y. Shi, Z. Zhang, H. Zhang, X. Liu, and X. Zhang, Effect of Strain Rate on Microstructure Evolutions and Mechanical Properties of Cryorolled Zr Upon Annealing, Mater. Lett., 2012, 66, p 305–307CrossRef
38.
Zurück zum Zitat D. Guo, M. Li, Y. Shi, Z. Zhang, H. Zhang, X. Liu, B. Wei, and X. Zhang, High Strength and Ductility in Multimodal-Structured Zr, Mater. Des., 2012, 34, p 275–278CrossRef D. Guo, M. Li, Y. Shi, Z. Zhang, H. Zhang, X. Liu, B. Wei, and X. Zhang, High Strength and Ductility in Multimodal-Structured Zr, Mater. Des., 2012, 34, p 275–278CrossRef
39.
Zurück zum Zitat D. Guo, Z. Zhang, G. Zhang, M. Li, Y. Shi, T. Ma, and X. Zhang, An Extraordinary Enhancement of Strain Hardening in Fine-Grained Zirconium, Mater. Sci. Eng. A, 2014, 591, p 167–172CrossRef D. Guo, Z. Zhang, G. Zhang, M. Li, Y. Shi, T. Ma, and X. Zhang, An Extraordinary Enhancement of Strain Hardening in Fine-Grained Zirconium, Mater. Sci. Eng. A, 2014, 591, p 167–172CrossRef
40.
Zurück zum Zitat D. Fuloria, N. Kumar, S. Goel, R. Jayaganthan, S. Jha, and D. Srivastava, Tensile Properties and Microstructure Evolution of Zircaloy-4 Processed Through Rolling at Different Temperatures, Mater. Des., 2016, 103, p 40–51 D. Fuloria, N. Kumar, S. Goel, R. Jayaganthan, S. Jha, and D. Srivastava, Tensile Properties and Microstructure Evolution of Zircaloy-4 Processed Through Rolling at Different Temperatures, Mater. Des., 2016, 103, p 40–51
41.
Zurück zum Zitat J. Chessa, P. Smolinski, and T. Belytschko, The Extended Finite Element Method (XFEM) for Solidification Problems, Int. J. Numer. Methods Eng., 2002, 53, p 1959–1977CrossRef J. Chessa, P. Smolinski, and T. Belytschko, The Extended Finite Element Method (XFEM) for Solidification Problems, Int. J. Numer. Methods Eng., 2002, 53, p 1959–1977CrossRef
42.
Zurück zum Zitat A. Gravouil, N. Moës, and T. Belytschko, Non-planar 3D Crack Growth by the Extended Finite Element and Level Sets—Part II: Level Set Update, Int. J. Numer. Methods Eng., 2002, 53, p 2569–2586CrossRef A. Gravouil, N. Moës, and T. Belytschko, Non-planar 3D Crack Growth by the Extended Finite Element and Level Sets—Part II: Level Set Update, Int. J. Numer. Methods Eng., 2002, 53, p 2569–2586CrossRef
43.
Zurück zum Zitat W.T. Becker and S. Lampman, Fracture Appearance and Mechanisms of Deformation and Fracture, ASM International, Materials Park, 2002 W.T. Becker and S. Lampman, Fracture Appearance and Mechanisms of Deformation and Fracture, ASM International, Materials Park, 2002
45.
Zurück zum Zitat L.U. Zizi and L.I.U. Yongming, Concurrent Fatigue Crack Growth Simulation Using Extended Finite Element Method, Front. Archit. Civ. Eng. China, 2016, 4, p 339–347 L.U. Zizi and L.I.U. Yongming, Concurrent Fatigue Crack Growth Simulation Using Extended Finite Element Method, Front. Archit. Civ. Eng. China, 2016, 4, p 339–347
Metadaten
Titel
Evaluating Fracture Toughness of Rolled Zircaloy-2 at Different Temperatures Using XFEM
verfasst von
Sunkulp Goel
Nikhil Kumar
Devasri Fuloria
R. Jayaganthan
I. V. Singh
D. Srivastava
G. K. Dey
N. Saibaba
Publikationsdatum
21.07.2016
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2016
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2241-y

Weitere Artikel der Ausgabe 9/2016

Journal of Materials Engineering and Performance 9/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.