Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 1/2019

18.12.2018

Constitutive Modeling for Hot Deformation Behavior of Al-5083 + SiC Composite

verfasst von: Amitava Rudra, Satyabrata Das, Rupa Dasgupta

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present research, isothermal hot deformation behavior of aluminum 5083 alloy + 15 (wt.%) SiC composite was obtained through compression test on INSTRON 8801 universal tensile testing machine (UTM) under a wide temperature range of 473-773 K and strain rate range of 0.01-10 s−1. The experimental true stress–strain data were employed to establish constitutive equations based on modified Johnson–Cook (JC) model and modified Zerilli–Armstrong (ZA) model to predict the hot flow behavior of the composite. The flow stress values obtained from these two models were plotted against the experimental flow curves to check the accuracy of these models. Suitability of the models was evaluated by comparing correlation coefficient (R), average absolute relative error and relative errors of prediction. The results show that the hot flow stresses of the present material depend on temperature and strain rate significantly. Both the models give good description of the hot deformation behavior of the composite. The prediction accuracy is found to be higher for modified ZA model compared to modified JC model, though the number of materials constants involved and time needed to evaluate them to establish the model are lower for modified JC model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T. Murai, S.-I. Matsuoka, S. Miyamoto, and Y. Oki, Effects of Extrusion Conditions on Microstructure and Mechanical Properties of AZ31B Magnesium Alloy Extrusions, J. Mater. Process. Technol., 2003, 141, p 207–212CrossRef T. Murai, S.-I. Matsuoka, S. Miyamoto, and Y. Oki, Effects of Extrusion Conditions on Microstructure and Mechanical Properties of AZ31B Magnesium Alloy Extrusions, J. Mater. Process. Technol., 2003, 141, p 207–212CrossRef
2.
Zurück zum Zitat M.-L. Hu, Z.-S. Ji, and X.-Y. Chen, Effect of Extrusion Ratio on Microstructure and Mechanical Properties of AZ91D Magnesium Alloy Recycled from Scraps by Hot Extrusion, Trans. Nonferr. Met. Soc. China, 2010, 20, p 987–991CrossRef M.-L. Hu, Z.-S. Ji, and X.-Y. Chen, Effect of Extrusion Ratio on Microstructure and Mechanical Properties of AZ91D Magnesium Alloy Recycled from Scraps by Hot Extrusion, Trans. Nonferr. Met. Soc. China, 2010, 20, p 987–991CrossRef
3.
Zurück zum Zitat Ü. Cöcen and K. Önel, Ductility and Strength of Extruded SiCp/Aluminium-Alloy Composites, Compos. Sci. Technol., 2002, 62, p 275–282CrossRef Ü. Cöcen and K. Önel, Ductility and Strength of Extruded SiCp/Aluminium-Alloy Composites, Compos. Sci. Technol., 2002, 62, p 275–282CrossRef
4.
Zurück zum Zitat İ. Özdemir, Ü. Cöcen, and K. Önel, The Effect of Forging on the Properties of Particulate-SiC-Reinforced Aluminium-Alloy Composites, Compos. Sci. Technol., 2000, 60, p 411–419CrossRef İ. Özdemir, Ü. Cöcen, and K. Önel, The Effect of Forging on the Properties of Particulate-SiC-Reinforced Aluminium-Alloy Composites, Compos. Sci. Technol., 2000, 60, p 411–419CrossRef
5.
Zurück zum Zitat O. Sabokpa, A. Zarei-Hanzaki, H. Abedi, and N. Haghdadi, Artificial Neural Network Modeling to Predict the High Temperature Flow Behavior of an AZ81 Magnesium Alloy, Mater. Des., 2012, 39, p 390–396CrossRef O. Sabokpa, A. Zarei-Hanzaki, H. Abedi, and N. Haghdadi, Artificial Neural Network Modeling to Predict the High Temperature Flow Behavior of an AZ81 Magnesium Alloy, Mater. Des., 2012, 39, p 390–396CrossRef
6.
Zurück zum Zitat K. Rao, Y. Prasad, and K. Suresh, Materials Modeling and Simulation of Isothermal Forging of Rolled AZ31B Magnesium Alloy: Anisotropy of Flow, Mater. Des., 2011, 32, p 2545–2553CrossRef K. Rao, Y. Prasad, and K. Suresh, Materials Modeling and Simulation of Isothermal Forging of Rolled AZ31B Magnesium Alloy: Anisotropy of Flow, Mater. Des., 2011, 32, p 2545–2553CrossRef
7.
Zurück zum Zitat P. Changizian, A. Zarei-Hanzaki, and A.A. Roostaei, The High Temperature Flow Behavior Modeling of AZ81 Magnesium Alloy Considering Strain Effects, Mater. Des., 2012, 39, p 384–389CrossRef P. Changizian, A. Zarei-Hanzaki, and A.A. Roostaei, The High Temperature Flow Behavior Modeling of AZ81 Magnesium Alloy Considering Strain Effects, Mater. Des., 2012, 39, p 384–389CrossRef
8.
Zurück zum Zitat L. Chen, G. Zhao, J. Yu, W. Zhang, and T. Wu, Analysis and Porthole Die Design for a Multi-hole Extrusion Process of a Hollow, Thin-Walled Aluminum Profile, Int. J. Adv. Manuf. Technol., 2014, 74, p 383–392CrossRef L. Chen, G. Zhao, J. Yu, W. Zhang, and T. Wu, Analysis and Porthole Die Design for a Multi-hole Extrusion Process of a Hollow, Thin-Walled Aluminum Profile, Int. J. Adv. Manuf. Technol., 2014, 74, p 383–392CrossRef
9.
Zurück zum Zitat N. Bontcheva, G. Petzov, and L. Parashkevova, Thermomechanical Modelling of Hot Extrusion of Al-Alloys, Followed by Cooling on the Press, Comput. Mater. Sci., 2006, 38, p 83–89CrossRef N. Bontcheva, G. Petzov, and L. Parashkevova, Thermomechanical Modelling of Hot Extrusion of Al-Alloys, Followed by Cooling on the Press, Comput. Mater. Sci., 2006, 38, p 83–89CrossRef
10.
Zurück zum Zitat Y.-J. Qin, Q.-L. Pan, Y.-B. He, W.-B. Li, X.-Y. Liu, and X. Fan, Modeling of Flow Stress for Magnesium Alloy During Hot Deformation, Mater. Sci. Eng. A, 2010, 527, p 2790–2797CrossRef Y.-J. Qin, Q.-L. Pan, Y.-B. He, W.-B. Li, X.-Y. Liu, and X. Fan, Modeling of Flow Stress for Magnesium Alloy During Hot Deformation, Mater. Sci. Eng. A, 2010, 527, p 2790–2797CrossRef
11.
Zurück zum Zitat S. Mandal, V. Rakesh, P. Sivaprasad, S. Venugopal, and K. Kasiviswanathan, Constitutive Equations to Predict High Temperature Flow Stress in a Ti-Modified Austenitic Stainless steel, Mater. Sci. Eng. A, 2009, 500, p 114–121CrossRef S. Mandal, V. Rakesh, P. Sivaprasad, S. Venugopal, and K. Kasiviswanathan, Constitutive Equations to Predict High Temperature Flow Stress in a Ti-Modified Austenitic Stainless steel, Mater. Sci. Eng. A, 2009, 500, p 114–121CrossRef
12.
Zurück zum Zitat Y. Lin and X.-M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759CrossRef Y. Lin and X.-M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759CrossRef
13.
Zurück zum Zitat W. Song, J. Ning, X. Mao, and H. Tang, A modified Johnson–Cook model for Titanium Matrix Composites Reinforced with Titanium Carbide Particles at Elevated Temperatures, Mater. Sci. Eng. A, 2013, 576, p 280–289CrossRef W. Song, J. Ning, X. Mao, and H. Tang, A modified Johnson–Cook model for Titanium Matrix Composites Reinforced with Titanium Carbide Particles at Elevated Temperatures, Mater. Sci. Eng. A, 2013, 576, p 280–289CrossRef
14.
Zurück zum Zitat T. Varol, A. Canakci, and S. Ozsahin, Artificial Neural Network Modeling to Effect of Reinforcement Properties on the Physical and Mechanical Properties of Al2024–B4C Composites Produced by Powder Metallurgy, Compos. B Eng., 2013, 54, p 224–233CrossRef T. Varol, A. Canakci, and S. Ozsahin, Artificial Neural Network Modeling to Effect of Reinforcement Properties on the Physical and Mechanical Properties of Al2024–B4C Composites Produced by Powder Metallurgy, Compos. B Eng., 2013, 54, p 224–233CrossRef
15.
Zurück zum Zitat V. Senthilkumar, A. Balaji, and D. Arulkirubakaran, Application of Constitutive And Neural Network Models for Prediction of High Temperature Flow Behavior of Al/Mg based nanocomposite, Trans. Nonferr. Met. Soc. China, 2013, 23, p 1737–1750CrossRef V. Senthilkumar, A. Balaji, and D. Arulkirubakaran, Application of Constitutive And Neural Network Models for Prediction of High Temperature Flow Behavior of Al/Mg based nanocomposite, Trans. Nonferr. Met. Soc. China, 2013, 23, p 1737–1750CrossRef
16.
Zurück zum Zitat L. Chen, G. Zhao, and J. Yu, Hot Deformation Behavior and Constitutive Modeling of Homogenized 6026 Aluminum Alloy, Mater. Des., 2015, 74, p 25–35CrossRef L. Chen, G. Zhao, and J. Yu, Hot Deformation Behavior and Constitutive Modeling of Homogenized 6026 Aluminum Alloy, Mater. Des., 2015, 74, p 25–35CrossRef
17.
Zurück zum Zitat Y. Prasad and K. Rao, Processing Maps and Rate Controlling Mechanisms of Hot Deformation of Electrolytic Tough Pitch Copper in the Temperature Range 300–950°C, Mater. Sci. Eng. A, 2005, 391, p 141–150CrossRef Y. Prasad and K. Rao, Processing Maps and Rate Controlling Mechanisms of Hot Deformation of Electrolytic Tough Pitch Copper in the Temperature Range 300–950°C, Mater. Sci. Eng. A, 2005, 391, p 141–150CrossRef
18.
Zurück zum Zitat Y. Prasad, Recent Advances in the Science of Mechanical Processing, Indian J. Technol., 1990, 28, p 435–451 Y. Prasad, Recent Advances in the Science of Mechanical Processing, Indian J. Technol., 1990, 28, p 435–451
19.
Zurück zum Zitat R. Goswami, G. Spanos, P. Pao, and R. Holtz, Precipitation Behavior of the ß Phase in Al-5083, Mater. Sci. Eng. A, 2010, 527, p 1089–1095CrossRef R. Goswami, G. Spanos, P. Pao, and R. Holtz, Precipitation Behavior of the ß Phase in Al-5083, Mater. Sci. Eng. A, 2010, 527, p 1089–1095CrossRef
20.
Zurück zum Zitat Y. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43, p 243–258CrossRef Y. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43, p 243–258CrossRef
21.
Zurück zum Zitat V. Senthilkumar, A. Balaji, and R. Narayanasamy, Analysis of Hot Deformation Behavior of Al 5083–TiC Nanocomposite Using Constitutive and Dynamic Material Models, Mater. Des., 2012, 37, p 102–110CrossRef V. Senthilkumar, A. Balaji, and R. Narayanasamy, Analysis of Hot Deformation Behavior of Al 5083–TiC Nanocomposite Using Constitutive and Dynamic Material Models, Mater. Des., 2012, 37, p 102–110CrossRef
22.
Zurück zum Zitat Y. Lin, X.-M. Chen, and G. Liu, A Modified Johnson–Cook Model for Tensile Behaviors of Typical High-Strength Alloy Steel, Mater. Sci. Eng. A, 2010, 527, p 6980–6986CrossRef Y. Lin, X.-M. Chen, and G. Liu, A Modified Johnson–Cook Model for Tensile Behaviors of Typical High-Strength Alloy Steel, Mater. Sci. Eng. A, 2010, 527, p 6980–6986CrossRef
23.
Zurück zum Zitat D. Samantaray, S. Mandal, U. Borah, A. Bhaduri, and P. Sivaprasad, A Thermo-Viscoplastic Constitutive Model to Predict Elevated-Temperature Flow Behavior in a Titanium-Modified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2009, 526, p 1–6CrossRef D. Samantaray, S. Mandal, U. Borah, A. Bhaduri, and P. Sivaprasad, A Thermo-Viscoplastic Constitutive Model to Predict Elevated-Temperature Flow Behavior in a Titanium-Modified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2009, 526, p 1–6CrossRef
24.
Zurück zum Zitat M. Vedani, E. Gariboldi, and F. D’Errico. Hot Workability and Processing Maps of Aluminium Based Discontinuously Reinforced Composites. Mater. Sci. Technol., 2002, 18, p 507–514CrossRef M. Vedani, E. Gariboldi, and F. D’Errico. Hot Workability and Processing Maps of Aluminium Based Discontinuously Reinforced Composites. Mater. Sci. Technol., 2002, 18, p 507–514CrossRef
Metadaten
Titel
Constitutive Modeling for Hot Deformation Behavior of Al-5083 + SiC Composite
verfasst von
Amitava Rudra
Satyabrata Das
Rupa Dasgupta
Publikationsdatum
18.12.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 1/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3813-9

Weitere Artikel der Ausgabe 1/2019

Journal of Materials Engineering and Performance 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.