Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 7/2019

27.06.2019

Effect of Strain Rate on the Tensile Behavior of CoCrFeNi and CoCrFeMnNi High-Entropy Alloys

verfasst von: Mitra Shabani, Joseph Indeck, Kavan Hazeli, Paul D. Jablonski, Garrett J. Pataky

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 7/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

High-entropy alloys (HEAs), a novel class of metal alloys, have been receiving increasing attention from the scientific community. HEAs have the potential to be used in critical load-bearing applications in replacement of conventional alloys such as stainless steel and nickel-base superalloys. Tensile experiments at quasi-static to dynamic strain rates (10−4-103 s−1) were performed on two single-phase face-centered cubic HEAs, CoCrFeNi and CoCrFeMnNi. Electron backscatter diffraction was used to study the microstructure of the samples before the experiments, and transmission electron microscopy was performed postmortem. The dominant deformation mechanisms were dislocation slip at quasi-static strain rates with the addition of deformation nano-twins at dynamic strain rates. Ultimate dynamic tensile strength and ductility improved with the increase in strain rate, which can be attributed to the activation of deformation nano-twins in HEAs. CoCrFeNi and CoCrFeMnNi both have low stacking fault energies, which could promote twinning at high strain rates to accommodate plastic deformation. The strain rate sensitivity of the flow stress increased with increasing strain rate, beginning with negligible strain rate sensitivity in the quasi-static range to high strain rate sensitivity in the dynamic range. CoCrFeMnNi showed greater strain rate sensitivity of flow stress. CoCrFeNi, with less configurational entropy, had higher mechanical properties and strain-hardening rates compared to CoCrFeMnNi, which was attributed to the weakening effect of the addition of Mn on the solid solution hardening.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E.J. Pickering and N.G. Jones, High-Entropy Alloys: A Critical Assessment of Their Founding Principles and Future Prospects, Int. Mater. Rev., 2016, 61, p 183–202CrossRef E.J. Pickering and N.G. Jones, High-Entropy Alloys: A Critical Assessment of Their Founding Principles and Future Prospects, Int. Mater. Rev., 2016, 61, p 183–202CrossRef
6.
Zurück zum Zitat W. Huo, H. Zhou, F. Fang, X. Hu, Z. Xie, and J. Jiang, Strain-Rate Effect upon the Tensile Behavior of CoCrFeNi High-Entropy Alloys, Mater. Sci. Eng. A, 2017, 689, p 366–369CrossRef W. Huo, H. Zhou, F. Fang, X. Hu, Z. Xie, and J. Jiang, Strain-Rate Effect upon the Tensile Behavior of CoCrFeNi High-Entropy Alloys, Mater. Sci. Eng. A, 2017, 689, p 366–369CrossRef
7.
Zurück zum Zitat B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345, p 1153–1158CrossRef B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345, p 1153–1158CrossRef
9.
Zurück zum Zitat G.R. Holcomb, J. Tylczak, and C. Carney, Oxidation of CoCrFeMnNi High Entropy Alloys, JOM, 2015, 67, p 2326–2339CrossRef G.R. Holcomb, J. Tylczak, and C. Carney, Oxidation of CoCrFeMnNi High Entropy Alloys, JOM, 2015, 67, p 2326–2339CrossRef
10.
Zurück zum Zitat N. Kumar, Q. Ying, X. Nie, R.S. Mishra, Z. Tang, P.K. Liaw, R.E. Brennan, K.J. Doherty, and K.C. Cho, High Strain-Rate Compressive Deformation Behavior of the Al0.1CrFeCoNi High Entropy Alloy, Mater. Des., 2015, 86, p 598–602CrossRef N. Kumar, Q. Ying, X. Nie, R.S. Mishra, Z. Tang, P.K. Liaw, R.E. Brennan, K.J. Doherty, and K.C. Cho, High Strain-Rate Compressive Deformation Behavior of the Al0.1CrFeCoNi High Entropy Alloy, Mater. Des., 2015, 86, p 598–602CrossRef
11.
Zurück zum Zitat J.W.-W. Yeh, S.-K.K. Chen, S.-J.J. Lin, J.-Y.Y. Gan, T.S.-S. Chin, T.-T.T. Shun, C.-H.H. Tsau, and S.Y.-Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303. https://doi.org/10.1002/adem.200300567 CrossRef J.W.-W. Yeh, S.-K.K. Chen, S.-J.J. Lin, J.-Y.Y. Gan, T.S.-S. Chin, T.-T.T. Shun, C.-H.H. Tsau, and S.Y.-Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303. https://​doi.​org/​10.​1002/​adem.​200300567 CrossRef
17.
Zurück zum Zitat F. Otto, Y. Yang, H. Bei, and E.P. George, Relative Effects of Enthalpy and Entropy on the Phase Stability of Equiatomic High-Entropy Alloys, Acta Mater., 2013, 61, p 2628–2638CrossRef F. Otto, Y. Yang, H. Bei, and E.P. George, Relative Effects of Enthalpy and Entropy on the Phase Stability of Equiatomic High-Entropy Alloys, Acta Mater., 2013, 61, p 2628–2638CrossRef
18.
Zurück zum Zitat N.G. Jones, J.W. Aveson, A. Bhowmik, B.D. Conduit, and H.J. Stone, On the Entropic Stabilisation of an Al0.5CrFeCoNiCu High Entropy Alloy, Intermetallics, 2014, 54, p 148–153CrossRef N.G. Jones, J.W. Aveson, A. Bhowmik, B.D. Conduit, and H.J. Stone, On the Entropic Stabilisation of an Al0.5CrFeCoNiCu High Entropy Alloy, Intermetallics, 2014, 54, p 148–153CrossRef
21.
Zurück zum Zitat W. Abuzaid and H. Sehitoglu, Critical Resolved Shear Stress for Slip and Twin Nucleation in Single Crystalline FeNiCoCrMn High Entropy Alloy, Mater. Charact., 2017, 129, p 288–299CrossRef W. Abuzaid and H. Sehitoglu, Critical Resolved Shear Stress for Slip and Twin Nucleation in Single Crystalline FeNiCoCrMn High Entropy Alloy, Mater. Charact., 2017, 129, p 288–299CrossRef
23.
Zurück zum Zitat S.Y. Lee, S.I. Lee, and B. Hwang, Effect of Strain Rate on Tensile and Serration Behaviors of an Austenitic Fe-22Mn-0.7C Twinning-Induced Plasticity Steel, Mater. Sci. Eng. A, 2018, 711, p 22–28CrossRef S.Y. Lee, S.I. Lee, and B. Hwang, Effect of Strain Rate on Tensile and Serration Behaviors of an Austenitic Fe-22Mn-0.7C Twinning-Induced Plasticity Steel, Mater. Sci. Eng. A, 2018, 711, p 22–28CrossRef
24.
Zurück zum Zitat D. Barbier, N. Gey, S. Allain, N. Bozzolo, and M. Humbert, Analysis of the Tensile Behavior of a TWIP Steel Based on the Texture and Microstructure Evolutions, Mater. Sci. Eng. A, 2009, 500, p 196–206CrossRef D. Barbier, N. Gey, S. Allain, N. Bozzolo, and M. Humbert, Analysis of the Tensile Behavior of a TWIP Steel Based on the Texture and Microstructure Evolutions, Mater. Sci. Eng. A, 2009, 500, p 196–206CrossRef
25.
Zurück zum Zitat O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier, High Manganese Austenitic Twinning Induced Plasticity Steels: A Review of the Microstructure Properties Relationships, Curr. Opin. Solid State Mater. Sci., 2011, 15, p 141–168CrossRef O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier, High Manganese Austenitic Twinning Induced Plasticity Steels: A Review of the Microstructure Properties Relationships, Curr. Opin. Solid State Mater. Sci., 2011, 15, p 141–168CrossRef
26.
Zurück zum Zitat D.R. Steinmetz, T. Jäpel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed-Akbari, T. Hickel, F. Roters, D. Raabe, A. Saeed-Akbari, T. Hickel, F. Roters, and D. Raabe, Revealing the Strain-Hardening Behavior of Twinning-Induced Plasticity Steels: Theory, Simul. Exp. Acta Mater., 2013, 61(2), p 494–510CrossRef D.R. Steinmetz, T. Jäpel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed-Akbari, T. Hickel, F. Roters, D. Raabe, A. Saeed-Akbari, T. Hickel, F. Roters, and D. Raabe, Revealing the Strain-Hardening Behavior of Twinning-Induced Plasticity Steels: Theory, Simul. Exp. Acta Mater., 2013, 61(2), p 494–510CrossRef
27.
Zurück zum Zitat I. Karaman, H. Sehitoglu, K. Gall, Y.I. Chumlyakov, and H.J. Maier, Deformation of Single Crystal Hadfield Steel by Twinning and Slip, Acta Mater., 2000, 48, p 1345–1359CrossRef I. Karaman, H. Sehitoglu, K. Gall, Y.I. Chumlyakov, and H.J. Maier, Deformation of Single Crystal Hadfield Steel by Twinning and Slip, Acta Mater., 2000, 48, p 1345–1359CrossRef
28.
Zurück zum Zitat B. Wang, A. Fu, X. Huang, B. Liu, Y. Liu, Z. Li, and X. Zan, Mechanical Properties and Microstructure of the CoCrFeMnNi High Entropy Alloy Under High Strain Rate Compression, J. Mater. Eng. Perform., 2016, 25(7), p 2985–2992CrossRef B. Wang, A. Fu, X. Huang, B. Liu, Y. Liu, Z. Li, and X. Zan, Mechanical Properties and Microstructure of the CoCrFeMnNi High Entropy Alloy Under High Strain Rate Compression, J. Mater. Eng. Perform., 2016, 25(7), p 2985–2992CrossRef
29.
Zurück zum Zitat J.M. Park, J. Moon, J.W. Bae, M.J. Jang, J. Park, S. Lee, and H.S. Kim, Strain Rate Effects of Dynamic Compressive Deformation on Mechanical Properties and Microstructure of CoCrFeMnNi High-Entropy Alloy, Mater. Sci. Eng. A, 2018, 719, p 155–163CrossRef J.M. Park, J. Moon, J.W. Bae, M.J. Jang, J. Park, S. Lee, and H.S. Kim, Strain Rate Effects of Dynamic Compressive Deformation on Mechanical Properties and Microstructure of CoCrFeMnNi High-Entropy Alloy, Mater. Sci. Eng. A, 2018, 719, p 155–163CrossRef
30.
31.
Zurück zum Zitat G.T. Gray, Classic Split-Hopkinson Pressure Bar Testing, in ASM Handbook Vol. 8: Mechanical Testing and Evaluation, 2000 G.T. Gray, Classic Split-Hopkinson Pressure Bar Testing, in ASM Handbook Vol. 8: Mechanical Testing and Evaluation, 2000
32.
Zurück zum Zitat K.T. Ramesh, Chapter 33. High Strain Rate and Impact Experiments, in Springer Handbook of Experimental Solid Mechanics, 2008 K.T. Ramesh, Chapter 33. High Strain Rate and Impact Experiments, in Springer Handbook of Experimental Solid Mechanics, 2008
33.
Zurück zum Zitat W. Chen and B. Song, Split Hopkinson (Kolsky) Bar: Design, Testing and Applications, Springer, New York, 2011CrossRef W. Chen and B. Song, Split Hopkinson (Kolsky) Bar: Design, Testing and Applications, Springer, New York, 2011CrossRef
34.
Zurück zum Zitat S. Mahajan, C.S. Pande, M.A. Imam, and B.B. Rath, Formation of Annealing Twins in f.c.c. Crystals, Acta Mater., 1997, 45, p 2633–2638CrossRef S. Mahajan, C.S. Pande, M.A. Imam, and B.B. Rath, Formation of Annealing Twins in f.c.c. Crystals, Acta Mater., 1997, 45, p 2633–2638CrossRef
35.
Zurück zum Zitat R.L. Fullman and J.C. Fisher, Formation of Annealing Twins during Grain Growth, J. Appl. Phys., 1951, 21, p 1350–1355CrossRef R.L. Fullman and J.C. Fisher, Formation of Annealing Twins during Grain Growth, J. Appl. Phys., 1951, 21, p 1350–1355CrossRef
36.
Zurück zum Zitat R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York, 1996 R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York, 1996
37.
Zurück zum Zitat M. Komarasamy, N. Kumar, R.S. Mishra, and P.K. Liaw, Anomalies in the Deformation Mechanism and Kinetics of Coarse-Grained High Entropy Alloy, Mater. Sci. Eng. A, 2016, 654, p 256–263CrossRef M. Komarasamy, N. Kumar, R.S. Mishra, and P.K. Liaw, Anomalies in the Deformation Mechanism and Kinetics of Coarse-Grained High Entropy Alloy, Mater. Sci. Eng. A, 2016, 654, p 256–263CrossRef
38.
Zurück zum Zitat J. Moon, S.I. Hong, J.W. Bae, M.J. Jang, D. Yim, and H.S. Kim, On the Strain Rate-Dependent Deformation Mechanism of CoCrFeMnNi High-Entropy Alloy at Liquid Nitrogen Temperature, Mater. Res. Lett., 2017, 5, p 427–477CrossRef J. Moon, S.I. Hong, J.W. Bae, M.J. Jang, D. Yim, and H.S. Kim, On the Strain Rate-Dependent Deformation Mechanism of CoCrFeMnNi High-Entropy Alloy at Liquid Nitrogen Temperature, Mater. Res. Lett., 2017, 5, p 427–477CrossRef
39.
Zurück zum Zitat D.M. Bruce, D.K. Matlock, J.G. Speer, and A.K. De, Assessment of the Strain-Rate Dependent Tensile Properties of Automotive Sheet Steels, SAE Technical Paper, 2004 D.M. Bruce, D.K. Matlock, J.G. Speer, and A.K. De, Assessment of the Strain-Rate Dependent Tensile Properties of Automotive Sheet Steels, SAE Technical Paper, 2004
40.
Zurück zum Zitat J.D. Campbell and W.G. Ferguson, The Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel, Philos. Mag., 1970, 21, p 63–82CrossRef J.D. Campbell and W.G. Ferguson, The Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel, Philos. Mag., 1970, 21, p 63–82CrossRef
41.
Zurück zum Zitat B.L. Boyce and M.F. Dilmore, The Dynamic Tensile Behavior of Tough, Ultrahigh-Strength Steels at Strain-Rates from 0.0002 s−1 to 200 s−1, Int. J. Impact Eng., 2009, 36, p 263–271CrossRef B.L. Boyce and M.F. Dilmore, The Dynamic Tensile Behavior of Tough, Ultrahigh-Strength Steels at Strain-Rates from 0.0002 s−1 to 200 s−1, Int. J. Impact Eng., 2009, 36, p 263–271CrossRef
42.
Zurück zum Zitat N. Tsuchida, Y. Izaki, T. Tanaka, and K. Fukaura, Effects of Temperature and Strain Rate on Stress-Strain Curves for Dual-Phase Steels and Their Calculations by Using the Kocks–Mecking Model, ISIJ Int., 2011, 97, p 201–208 N. Tsuchida, Y. Izaki, T. Tanaka, and K. Fukaura, Effects of Temperature and Strain Rate on Stress-Strain Curves for Dual-Phase Steels and Their Calculations by Using the Kocks–Mecking Model, ISIJ Int., 2011, 97, p 201–208
43.
Zurück zum Zitat Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-Component Alloys, Adv. Eng. Mater., 2008, 10, p 534–538CrossRef Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-Component Alloys, Adv. Eng. Mater., 2008, 10, p 534–538CrossRef
44.
Zurück zum Zitat G.A. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.S. Tortika, and O.N. Senkov, Effect of Mn and v on Structure and Mechanical Properties of High-Entropy Alloys Based on CoCrFeNi System, J. Alloys Compd., 2014, 591, p 11–21CrossRef G.A. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.S. Tortika, and O.N. Senkov, Effect of Mn and v on Structure and Mechanical Properties of High-Entropy Alloys Based on CoCrFeNi System, J. Alloys Compd., 2014, 591, p 11–21CrossRef
45.
Zurück zum Zitat N.L. Okamoto, K. Yuge, K. Tanaka, H. Inui, and E.P. George, Atomic Displacement in the CrMnFeCoNi High-Entropy Alloy—A Scaling Factor to Predict Solid Solution Strengthening, AIP Adv., 2016, 6, p 125008-(1-8)CrossRef N.L. Okamoto, K. Yuge, K. Tanaka, H. Inui, and E.P. George, Atomic Displacement in the CrMnFeCoNi High-Entropy Alloy—A Scaling Factor to Predict Solid Solution Strengthening, AIP Adv., 2016, 6, p 125008-(1-8)CrossRef
46.
Zurück zum Zitat S.H. Joo, H. Kato, M.J. Jang, J. Moon, C.W. Tsai, J.W. Yeh, and H.S. Kim, Tensile Deformation Behavior and Deformation Twinning of an Equimolar CoCrFeMnNi High-Entropy Alloy, Mater. Sci. Eng. A, 2017, 689, p 122–133CrossRef S.H. Joo, H. Kato, M.J. Jang, J. Moon, C.W. Tsai, J.W. Yeh, and H.S. Kim, Tensile Deformation Behavior and Deformation Twinning of an Equimolar CoCrFeMnNi High-Entropy Alloy, Mater. Sci. Eng. A, 2017, 689, p 122–133CrossRef
47.
Zurück zum Zitat S.R. Kalidindi, A.A. Salem, and R.D. Doherty, Role of Deformation Twinning on Strain Hardening in Cubic and Hexagonal Polycrystalline Metals, Adv. Eng. Mater., 2003, 5, p 229–232CrossRef S.R. Kalidindi, A.A. Salem, and R.D. Doherty, Role of Deformation Twinning on Strain Hardening in Cubic and Hexagonal Polycrystalline Metals, Adv. Eng. Mater., 2003, 5, p 229–232CrossRef
48.
Zurück zum Zitat Z.S.S. Basinski, M.S.S. Szczerba, M. Niewczas, J.D.D. Embury, and S.J.J. Basinski, Transformation of Slip Dislocations during Twinning of Copper-Aluminum Alloy Crystals, Rev. Metall. Cah. D’Inf. Tech., 1997, 94, p 1037–1043 Z.S.S. Basinski, M.S.S. Szczerba, M. Niewczas, J.D.D. Embury, and S.J.J. Basinski, Transformation of Slip Dislocations during Twinning of Copper-Aluminum Alloy Crystals, Rev. Metall. Cah. D’Inf. Tech., 1997, 94, p 1037–1043
50.
Zurück zum Zitat Y. Wang, B. Liu, K. Yan, M. Wang, S. Kabra, Y.-L. Chiu, D. Dye, P.D. Lee, Y. Liu, and B. Cai, Probing Deformation Mechanisms of a FeCoCrNi High-Entropy Alloy at 293 and 77 K Using in Situ Neutron Diffraction, Acta Mater., 2018, 154, p 79–89CrossRef Y. Wang, B. Liu, K. Yan, M. Wang, S. Kabra, Y.-L. Chiu, D. Dye, P.D. Lee, Y. Liu, and B. Cai, Probing Deformation Mechanisms of a FeCoCrNi High-Entropy Alloy at 293 and 77 K Using in Situ Neutron Diffraction, Acta Mater., 2018, 154, p 79–89CrossRef
51.
Zurück zum Zitat C. Zener and J.H. Hollomon, Effect of Strain Rate upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22–32CrossRef C. Zener and J.H. Hollomon, Effect of Strain Rate upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22–32CrossRef
52.
Zurück zum Zitat Z. Li, S. Zhao, S.M. Alotaibi, Y. Liu, B. Wang, and M.A. Meyers, Adiabatic Shear Localization in the CrMnFeCoNi High-Entropy Alloy, Acta Mater., 2018, 151, p 424–431CrossRef Z. Li, S. Zhao, S.M. Alotaibi, Y. Liu, B. Wang, and M.A. Meyers, Adiabatic Shear Localization in the CrMnFeCoNi High-Entropy Alloy, Acta Mater., 2018, 151, p 424–431CrossRef
53.
Zurück zum Zitat Z. Wu, H. Bei, G.M. Pharr, and E.P. George, Temperature Dependence of the Mechanical Properties of Equiatomic Solid Solution Alloys with Face-Centered Cubic Crystal Structures, Acta Mater., 2014, 81, p 428–441CrossRef Z. Wu, H. Bei, G.M. Pharr, and E.P. George, Temperature Dependence of the Mechanical Properties of Equiatomic Solid Solution Alloys with Face-Centered Cubic Crystal Structures, Acta Mater., 2014, 81, p 428–441CrossRef
Metadaten
Titel
Effect of Strain Rate on the Tensile Behavior of CoCrFeNi and CoCrFeMnNi High-Entropy Alloys
verfasst von
Mitra Shabani
Joseph Indeck
Kavan Hazeli
Paul D. Jablonski
Garrett J. Pataky
Publikationsdatum
27.06.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 7/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04176-y

Weitere Artikel der Ausgabe 7/2019

Journal of Materials Engineering and Performance 7/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.