Skip to main content
Erschienen in: Journal of Coatings Technology and Research 3/2022

08.01.2022 | Original Research

Antibacterial noncytotoxic chitosan coatings on polytetrafluoroethylene films by plasma grafting for medical device applications

verfasst von: Juliana M. Vaz, Thiago B. Taketa, Jacobo Hernandez-Montelongo, Larissa M. C. G. Fiúza, Cristiano Rodrigues, Marisa M. Beppu, Rodrigo S. Vieira

Erschienen in: Journal of Coatings Technology and Research | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Chitosan is an exciting alternative for the development of coating-surfaces due to its large action spectrum against pathogenic microorganisms. However, to produce a stable coating with effective antibacterial action, a compromise between deacetylation degree (DD) and molecular weight (MW) is essential. Four chitosan samples were characterized regarding Mw and DD and correlated with the minimum and bactericide concentrations against E. coli, P. aeruginosa, and S. aureus. CHI80MW (79.7% DD and 7.0 × 105 Da) showed the best antibacterial effect and was selected to functionalize polytetrafluoroethylene (PTFE) surfaces by plasma. CHI80MW was grafted onto the PTFE surfaces using two different spacer molecules: poly(ethylene glycol) bis (carboxymethyl) ether (PEG) and poly(ethylene-alt-maleic anhydride) (PA). PTFE-Plasma-PA-CHI80MW exhibited a coating with more attached chitosan and better antibacterial action if compared to PTFE-Plasma-PEG-CHI80MW: after 8 h, PTFE-Plasma-PEG-CHI80MW presented a bacterial reduction of 25-30% for the three bacterial strains, and PTFE-Plasma-PA-CHI80MW reduced them to 77-90%. Moreover, cytotoxicity tests showed that PTFE-Plasma-PA-CHI80MW samples were compatible with human fibroblasts.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Costerton, JW, Stewart, PS, Greenberg, EP, “Bacterial biofilms: A common cause of persistent infections.” Science, 284 1318–1322 (1999)CrossRef Costerton, JW, Stewart, PS, Greenberg, EP, “Bacterial biofilms: A common cause of persistent infections.” Science, 284 1318–1322 (1999)CrossRef
3.
Zurück zum Zitat Kramer, A, Schwebke, I, Kampf, G, “How long do nosocomial pathogens persist on inanimate surfaces? A systematic review.” BMC Infect. Dis., 6 130 (2006)CrossRef Kramer, A, Schwebke, I, Kampf, G, “How long do nosocomial pathogens persist on inanimate surfaces? A systematic review.” BMC Infect. Dis., 6 130 (2006)CrossRef
4.
Zurück zum Zitat Campoccia, D, Montanaro, L, Arciola, CR, “A review of the biomaterials technologies for infection-resistant surfaces.” Biomaterials, 34 8533–8554 (2013)CrossRef Campoccia, D, Montanaro, L, Arciola, CR, “A review of the biomaterials technologies for infection-resistant surfaces.” Biomaterials, 34 8533–8554 (2013)CrossRef
5.
Zurück zum Zitat Ogino, A, Kral, M, Yamashita, M, et al. “Effects of low-temperature surface-wave plasma treatment with various gases on surface modification of chitosan.” Appl. Surf. Sci., 255 2347–2352 (2008)CrossRef Ogino, A, Kral, M, Yamashita, M, et al. “Effects of low-temperature surface-wave plasma treatment with various gases on surface modification of chitosan.” Appl. Surf. Sci., 255 2347–2352 (2008)CrossRef
6.
Zurück zum Zitat Vaz J, Michel E, Chevallier P, et al. "Covalent grafting of chitosan on plasma-treated polytetrafluoroethylene surfaces for biomedical applications." J. Biomater. Tissue Eng., 4 (11), 915–924 (2014)CrossRef Vaz J, Michel E, Chevallier P, et al. "Covalent grafting of chitosan on plasma-treated polytetrafluoroethylene surfaces for biomedical applications." J. Biomater. Tissue Eng., 4 (11), 915–924 (2014)CrossRef
7.
Zurück zum Zitat Kong, M, Chen, X, Xing, K, et al. “Antimicrobial properties of chitosan and mode of action: A state of the art review.” Int. J. Food Microbiol., 144 51–63 (2010)CrossRef Kong, M, Chen, X, Xing, K, et al. “Antimicrobial properties of chitosan and mode of action: A state of the art review.” Int. J. Food Microbiol., 144 51–63 (2010)CrossRef
8.
Zurück zum Zitat Mourya, VK, Inamdar, NN, “Chitosan-modifications and applications: Opportunities galore.” React. Funct. Polym., 68 1013–1051 (2008)CrossRef Mourya, VK, Inamdar, NN, “Chitosan-modifications and applications: Opportunities galore.” React. Funct. Polym., 68 1013–1051 (2008)CrossRef
9.
Zurück zum Zitat Xu Y, Liu J, Guan S, et al. “A dual pH and redox-responsive Ag/AgO/carboxymethyl chitosan composite hydrogel for controlled dual drug delivery.” J. Biomater. Sci. Polym. Ed., 31 (13) 1706–1721 (2020)CrossRef Xu Y, Liu J, Guan S, et al. “A dual pH and redox-responsive Ag/AgO/carboxymethyl chitosan composite hydrogel for controlled dual drug delivery.” J. Biomater. Sci. Polym. Ed., 31 (13) 1706–1721 (2020)CrossRef
10.
Zurück zum Zitat Fan Z, Cheng P, Wang D, et al. “Design and investigation of salecan/chitosan hydrogel formulations with improved antibacterial performance and 3D cell culture function.” J. Biomater. Sci. Polym. Ed., 31 (17) 2268–2284 (2020)CrossRef Fan Z, Cheng P, Wang D, et al. “Design and investigation of salecan/chitosan hydrogel formulations with improved antibacterial performance and 3D cell culture function.” J. Biomater. Sci. Polym. Ed., 31 (17) 2268–2284 (2020)CrossRef
11.
Zurück zum Zitat Lavertu, M, Xia, Z, Serreqi, AN, et al. “A validated 1H NMR method for the determination of the degree of deacetylation of chitosan.” J. Pharm. Biomed. Anal., 32 1149–1158 (2003)CrossRef Lavertu, M, Xia, Z, Serreqi, AN, et al. “A validated 1H NMR method for the determination of the degree of deacetylation of chitosan.” J. Pharm. Biomed. Anal., 32 1149–1158 (2003)CrossRef
12.
Zurück zum Zitat Clinical and Laboratory Standards Institute, editor. “Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: M07-A10; approved standard.” 10th ed. Wayne, PA: Committee for Clinical Laboratory Standards; 2015. Clinical and Laboratory Standards Institute, editor. “Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: M07-A10; approved standard.” 10th ed. Wayne, PA: Committee for Clinical Laboratory Standards; 2015.
13.
Zurück zum Zitat Huang, M, Ma, Z, Khor, E, et al. “Uptake of FITC-chitosan nanoparticles by A549 cells.” Pharm. Res., 19 1488–1494 (2002)CrossRef Huang, M, Ma, Z, Khor, E, et al. “Uptake of FITC-chitosan nanoparticles by A549 cells.” Pharm. Res., 19 1488–1494 (2002)CrossRef
14.
Zurück zum Zitat Tokura, S, Ueno, K, Miyazaki, S, et al. “Molecular weight dependent antimicrobial activity by chitosan.” Macromol. Symp., 120 1–9 (1997)CrossRef Tokura, S, Ueno, K, Miyazaki, S, et al. “Molecular weight dependent antimicrobial activity by chitosan.” Macromol. Symp., 120 1–9 (1997)CrossRef
15.
Zurück zum Zitat Guerreiro, SG, Brochhausen, C, Negrão, R, et al. “Implanted neonatal human dermal fibroblasts influence the recruitment of endothelial cells in mice.” Biomatter., 2 43–52 (2012)CrossRef Guerreiro, SG, Brochhausen, C, Negrão, R, et al. “Implanted neonatal human dermal fibroblasts influence the recruitment of endothelial cells in mice.” Biomatter., 2 43–52 (2012)CrossRef
16.
Zurück zum Zitat Varma SR, Sivaprakasam TO, Mishra A, et al. “Protective effects of triphala on dermal fibroblasts and human keratinocytes.” PloS One, e0145921 (2016) Varma SR, Sivaprakasam TO, Mishra A, et al. “Protective effects of triphala on dermal fibroblasts and human keratinocytes.” PloS One, e0145921 (2016)
17.
Zurück zum Zitat Dee, GJ, Rhode, O, Wachter, R, “Chitosan: Multi-functional marine polymer.” Chitosan Multi-Funct. Mar. Polym., 116 39–44 (2001) Dee, GJ, Rhode, O, Wachter, R, “Chitosan: Multi-functional marine polymer.” Chitosan Multi-Funct. Mar. Polym., 116 39–44 (2001)
18.
Zurück zum Zitat Hernandez-Montelongo, J, Lucchesi, EG, Gonzalez, I, et al. “Hyaluronan/chitosan nanofilms assembled layer-by-layer and their antibacterial effect: A study using Staphylococcus aureus and Pseudomonas aeruginosa.” Colloids Surf. B Biointerfaces, 141 499–506 (2016)CrossRef Hernandez-Montelongo, J, Lucchesi, EG, Gonzalez, I, et al. “Hyaluronan/chitosan nanofilms assembled layer-by-layer and their antibacterial effect: A study using Staphylococcus aureus and Pseudomonas aeruginosa.” Colloids Surf. B Biointerfaces, 141 499–506 (2016)CrossRef
19.
Zurück zum Zitat Vasilev, K, Cook, J, Griesser, HJ, “Antibacterial surfaces for biomedical devices.” Expert Rev. Med. Devices, 6 553–567 (2009)CrossRef Vasilev, K, Cook, J, Griesser, HJ, “Antibacterial surfaces for biomedical devices.” Expert Rev. Med. Devices, 6 553–567 (2009)CrossRef
20.
Zurück zum Zitat Hernandez-Montelongo, J, Corrales Ureña, YR, Machado, D, et al. “Electrostatic immobilization of antimicrobial peptides on polyethylenimine and their antibacterial effect against Staphylococcus epidermidis.” Colloids Surf. B Biointerfaces, 164 370–378 (2018)CrossRef Hernandez-Montelongo, J, Corrales Ureña, YR, Machado, D, et al. “Electrostatic immobilization of antimicrobial peptides on polyethylenimine and their antibacterial effect against Staphylococcus epidermidis.” Colloids Surf. B Biointerfaces, 164 370–378 (2018)CrossRef
21.
Zurück zum Zitat Liu, H, Du, Y, Wang, X, et al. “Chitosan kills bacteria through cell membrane damage.” Int. J. Food Microbiol., 95 147–155 (2004)CrossRef Liu, H, Du, Y, Wang, X, et al. “Chitosan kills bacteria through cell membrane damage.” Int. J. Food Microbiol., 95 147–155 (2004)CrossRef
22.
Zurück zum Zitat Zivanovic, S, Chi, S, Draughon, AF, “Antimicrobial activity of chitosan films enriched with essential oils.” J. Food Sci., 70 M45–M51 (2005)CrossRef Zivanovic, S, Chi, S, Draughon, AF, “Antimicrobial activity of chitosan films enriched with essential oils.” J. Food Sci., 70 M45–M51 (2005)CrossRef
23.
Zurück zum Zitat Croisier, F, Jérôme, C, “Chitosan-based biomaterials for tissue engineering.” Eur. Polym. J., 49 780–792 (2013)CrossRef Croisier, F, Jérôme, C, “Chitosan-based biomaterials for tissue engineering.” Eur. Polym. J., 49 780–792 (2013)CrossRef
24.
Zurück zum Zitat Dash, M, Chiellini, F, Ottenbrite, RM, et al. “Chitosan—A versatile semi-synthetic polymer in biomedical applications.” Prog. Polym. Sci., 36 981–1014 (2011)CrossRef Dash, M, Chiellini, F, Ottenbrite, RM, et al. “Chitosan—A versatile semi-synthetic polymer in biomedical applications.” Prog. Polym. Sci., 36 981–1014 (2011)CrossRef
Metadaten
Titel
Antibacterial noncytotoxic chitosan coatings on polytetrafluoroethylene films by plasma grafting for medical device applications
verfasst von
Juliana M. Vaz
Thiago B. Taketa
Jacobo Hernandez-Montelongo
Larissa M. C. G. Fiúza
Cristiano Rodrigues
Marisa M. Beppu
Rodrigo S. Vieira
Publikationsdatum
08.01.2022
Verlag
Springer US
Erschienen in
Journal of Coatings Technology and Research / Ausgabe 3/2022
Print ISSN: 1547-0091
Elektronische ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-021-00560-3

Weitere Artikel der Ausgabe 3/2022

Journal of Coatings Technology and Research 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.