Skip to main content

22.04.2017 | Original Paper

Numerical prediction of ventilated planing flat plates for the design of Air Cavity Ships

verfasst von: Filippo Cucinotta, Vincenzo Nigrelli, Felice Sfravara

Erschienen in: International Journal on Interactive Design and Manufacturing (IJIDeM)

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, a great world issue is the respect for the environment. Each researcher, in his competence field, proposes new technologies and new approaches in order to reduce the environmental impact of a product or of an industrial process. In the naval field, the main way in order to reduce the environmental impact of the ship during the navigation is the reduction of the drag resistance and so the reduction of requested power. There are many ways in order to obtain a reduction of drag. This paper investigates, with a preliminary numerical study by means of Computational Fluid Dynamics (CFD), the Air Cavity Ships technology (ACS). A first part of the paper concerns the study of the rising bubble phenomenon inside a water column, in order to choice the better solver settings and understand if the CFD is suitable for this kind of problem. In this phase the main parameters analyzed are: the air critical mass, the rising velocity, the shape and the air circulation inside the bubble. In the second part of the work, a flat plate model with artificial air injection is conducted in order to understand the possible advantages of this application. The principal impacts of this technology are presented in terms of drag coefficient and lift coefficient respect to trim and velocity coefficient. The CFD method could be a suitable and fast method, in the preliminary phase, for the design of the ACS.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lackenby, H.: Resistance of ships, with special reference to skin friction and hull surface condition. Arch. Proc. Inst. Mech. Eng. 1-196, 1847-1982 . 176, 981–1014 (1962) Lackenby, H.: Resistance of ships, with special reference to skin friction and hull surface condition. Arch. Proc. Inst. Mech. Eng. 1-196, 1847-1982 . 176, 981–1014 (1962)
2.
Zurück zum Zitat Stenzel, V., Wilke, Y., Hage, W.: Drag-reducing paints for the reduction of fuel consumption in aviation and shipping. Prog. Org. Coat. 70, 224–229 (2011)CrossRef Stenzel, V., Wilke, Y., Hage, W.: Drag-reducing paints for the reduction of fuel consumption in aviation and shipping. Prog. Org. Coat. 70, 224–229 (2011)CrossRef
3.
Zurück zum Zitat Fukuda, K., Tokunaga, J., Nobunaga, T., Nakatani, T., Iwasaki, T., Kunitake, Y.: Frictional drag reduction with air lubricant over a super-water-repellent surface. J. Mar. Sci. Technol. 5, 123–130 (2000)CrossRef Fukuda, K., Tokunaga, J., Nobunaga, T., Nakatani, T., Iwasaki, T., Kunitake, Y.: Frictional drag reduction with air lubricant over a super-water-repellent surface. J. Mar. Sci. Technol. 5, 123–130 (2000)CrossRef
4.
Zurück zum Zitat Butuzov, A.A., Vasin, A.I., Drozdov, A.L., Ivanov, A.N., Kalyuzhny, V.G., Matveev, I.I., Ruzanov, V.E.: Full-scale trials of a boat with an air cavity. Shipbuild. Probl. 28, 45–51 (1988) Butuzov, A.A., Vasin, A.I., Drozdov, A.L., Ivanov, A.N., Kalyuzhny, V.G., Matveev, I.I., Ruzanov, V.E.: Full-scale trials of a boat with an air cavity. Shipbuild. Probl. 28, 45–51 (1988)
5.
Zurück zum Zitat Butuzov, A.A.: Limiting parameters of an artificial cavity formed on the lower surface of a horizontal wall. Fluid Dyn. 1, 116–118 (1968)CrossRef Butuzov, A.A.: Limiting parameters of an artificial cavity formed on the lower surface of a horizontal wall. Fluid Dyn. 1, 116–118 (1968)CrossRef
6.
Zurück zum Zitat Slyozkin, A., Atlar, M., Sampson, R., Seo, K.C.: An experimental investigation into the hydrodynamic drag reduction of a flat plate using air-fed cavities. Ocean Eng. 76, 105–120 (2014)CrossRef Slyozkin, A., Atlar, M., Sampson, R., Seo, K.C.: An experimental investigation into the hydrodynamic drag reduction of a flat plate using air-fed cavities. Ocean Eng. 76, 105–120 (2014)CrossRef
7.
Zurück zum Zitat Pearce, B.W., Brandner, P.A., Foster, S.J.: Ventilated cavity flow over a backward-facing step. J. Phys. Conf. Ser. 656, 12164 (2015)CrossRef Pearce, B.W., Brandner, P.A., Foster, S.J.: Ventilated cavity flow over a backward-facing step. J. Phys. Conf. Ser. 656, 12164 (2015)CrossRef
8.
Zurück zum Zitat Belle, A., Brandner, P.A., Pearce, B.W., de Graaf, K.L., Clarke, D.B.: Artificial thickening and thinning of cavitation tunnel boundary layers. Exp. Therm. Fluid Sci. 78, 75–89 (2016)CrossRef Belle, A., Brandner, P.A., Pearce, B.W., de Graaf, K.L., Clarke, D.B.: Artificial thickening and thinning of cavitation tunnel boundary layers. Exp. Therm. Fluid Sci. 78, 75–89 (2016)CrossRef
9.
Zurück zum Zitat Butterworth, J., Atlar, M., Shi, W.: Experimental analysis of an air cavity concept applied on a ship hull to improve the hull resistance. Ocean Eng. 110, 2–10 (2015)CrossRef Butterworth, J., Atlar, M., Shi, W.: Experimental analysis of an air cavity concept applied on a ship hull to improve the hull resistance. Ocean Eng. 110, 2–10 (2015)CrossRef
10.
Zurück zum Zitat Mizokami, S., Kawakita, C., Kodan, Y., Takano, S., Higasa, S., Shignaga, R.: Experimental study of air lubrication method and verification of effects on actual hull by means of sea trial. Mitsubishi Heavy Ind. Tech. Rev. 47, 41–47 (2010) Mizokami, S., Kawakita, C., Kodan, Y., Takano, S., Higasa, S., Shignaga, R.: Experimental study of air lubrication method and verification of effects on actual hull by means of sea trial. Mitsubishi Heavy Ind. Tech. Rev. 47, 41–47 (2010)
11.
Zurück zum Zitat Latorre, R.: Ship hull drag reduction using bottom air injection. Ocean Eng. 24, 161–175 (1997)CrossRef Latorre, R.: Ship hull drag reduction using bottom air injection. Ocean Eng. 24, 161–175 (1997)CrossRef
12.
Zurück zum Zitat Cucinotta, F., Guglielmino, E., Sfravara, F.: Life cycle assessment in yacht industry: a case study of comparison between hand lay-up and vacuum infusion. J. Clean. Prod. 142, 3822–3833 (2017) Cucinotta, F., Guglielmino, E., Sfravara, F.: Life cycle assessment in yacht industry: a case study of comparison between hand lay-up and vacuum infusion. J. Clean. Prod. 142, 3822–3833 (2017)
13.
Zurück zum Zitat Larsson, L., Raven, H.: The principles of naval architecture series: ship resistance and flow. The Society of Naval Architects and Marine Engineers, New Jersey (2010) Larsson, L., Raven, H.: The principles of naval architecture series: ship resistance and flow. The Society of Naval Architects and Marine Engineers, New Jersey (2010)
14.
Zurück zum Zitat ITTC: ITTC—recommended procedures and guidelines ITTC. 1–8 (2011) ITTC: ITTC—recommended procedures and guidelines ITTC. 1–8 (2011)
15.
Zurück zum Zitat Matveev, K.I.: Two-dimensional modeling of stepped planing hulls with open and pressurized air cavities. Int. J. Nav. Archit. Ocean Eng. 4, 162–171 (2012)CrossRef Matveev, K.I.: Two-dimensional modeling of stepped planing hulls with open and pressurized air cavities. Int. J. Nav. Archit. Ocean Eng. 4, 162–171 (2012)CrossRef
16.
Zurück zum Zitat Matveev, K.I.: Three-dimensional wave patterns in long air cavities on a horizontal plane. Ocean Eng. 34, 1882–1891 (2007)CrossRef Matveev, K.I.: Three-dimensional wave patterns in long air cavities on a horizontal plane. Ocean Eng. 34, 1882–1891 (2007)CrossRef
17.
Zurück zum Zitat Mäkiharju, S.A., Elbing, B.R., Wiggins, A., Schinasi, S., Vanden-Broeck, J.-M., Perlin, M., Dowling, D.R., Ceccio, S.L.: On the scaling of air entrainment from a ventilated partial cavity. J. Fluid Mech. 732, 47–76 (2013)CrossRefMATH Mäkiharju, S.A., Elbing, B.R., Wiggins, A., Schinasi, S., Vanden-Broeck, J.-M., Perlin, M., Dowling, D.R., Ceccio, S.L.: On the scaling of air entrainment from a ventilated partial cavity. J. Fluid Mech. 732, 47–76 (2013)CrossRefMATH
18.
Zurück zum Zitat Matveev, K.I.: Hydrodynamic modeling of semi-planing hulls with air cavities. Int. J. Nav. Archit. Ocean Eng. 7, 500–508 (2015)CrossRef Matveev, K.I.: Hydrodynamic modeling of semi-planing hulls with air cavities. Int. J. Nav. Archit. Ocean Eng. 7, 500–508 (2015)CrossRef
19.
Zurück zum Zitat Davies, R.M., Taylor, G.: The mechanics of large bubbles rising through extended liquids and through liquids in tubes. Proc. R. Soc. A Math. Phys. Eng. Sci. 200, 375–390 (1950)CrossRef Davies, R.M., Taylor, G.: The mechanics of large bubbles rising through extended liquids and through liquids in tubes. Proc. R. Soc. A Math. Phys. Eng. Sci. 200, 375–390 (1950)CrossRef
20.
Zurück zum Zitat Youngs, D.L.: Time-dependent multi-material flow with large fluid distortion. Numer. Methods Fluid Dyn. 24, 273–285 (1982)MATH Youngs, D.L.: Time-dependent multi-material flow with large fluid distortion. Numer. Methods Fluid Dyn. 24, 273–285 (1982)MATH
21.
Zurück zum Zitat Brackbill, J., Kothe, D., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992) Brackbill, J., Kothe, D., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)
22.
Zurück zum Zitat Hill, M.J.M.: On a spherical vortex. Philos. Trans. R. Soc. London. 185, 213–245 (1894)CrossRefMATH Hill, M.J.M.: On a spherical vortex. Philos. Trans. R. Soc. London. 185, 213–245 (1894)CrossRefMATH
23.
Zurück zum Zitat Lamb, H.: Hydrodynamics. University Press, Cambridge, London (1895) Lamb, H.: Hydrodynamics. University Press, Cambridge, London (1895)
24.
Zurück zum Zitat Tomiyama, A., Makino, Y., Zun, I.: Bubble tracking simulation of interaction among bubbles in a bubbly upflow. Trans. Model. Simul. 23, 1–10 (1999) Tomiyama, A., Makino, Y., Zun, I.: Bubble tracking simulation of interaction among bubbles in a bubbly upflow. Trans. Model. Simul. 23, 1–10 (1999)
25.
Zurück zum Zitat Tomiyama, A., Kataoka, I., Zun, I., Sakaguchi, T.: Drag coefficients of single bubbles under normal and micro gravity conditions. JSME Int. J. Ser. B 41, 472–479 (1998) Tomiyama, A., Kataoka, I., Zun, I., Sakaguchi, T.: Drag coefficients of single bubbles under normal and micro gravity conditions. JSME Int. J. Ser. B 41, 472–479 (1998)
26.
Zurück zum Zitat Elbing, B.R., Winkel, E.S., Lay, K.A., Ceccio, S.L., Dowling, D.R., Perlin, M.: Bubble-induced skin-friction drag reduction and the abrupt transition to air-layer drag reduction. J. Fluid Mech. 612, 201–236 (2008) Elbing, B.R., Winkel, E.S., Lay, K.A., Ceccio, S.L., Dowling, D.R., Perlin, M.: Bubble-induced skin-friction drag reduction and the abrupt transition to air-layer drag reduction. J. Fluid Mech. 612, 201–236 (2008)
Metadaten
Titel
Numerical prediction of ventilated planing flat plates for the design of Air Cavity Ships
verfasst von
Filippo Cucinotta
Vincenzo Nigrelli
Felice Sfravara
Publikationsdatum
22.04.2017
Verlag
Springer Paris
Erschienen in
International Journal on Interactive Design and Manufacturing (IJIDeM)
Print ISSN: 1955-2513
Elektronische ISSN: 1955-2505
DOI
https://doi.org/10.1007/s12008-017-0396-x