Skip to main content
Erschienen in: Neuroinformatics 3-4/2018

03.05.2018 | Original Article

SegAN: Adversarial Network with Multi-scale L1 Loss for Medical Image Segmentation

verfasst von: Yuan Xue, Tao Xu, Han Zhang, L. Rodney Long, Xiaolei Huang

Erschienen in: Neuroinformatics | Ausgabe 3-4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Inspired by classic Generative Adversarial Networks (GANs), we propose a novel end-to-end adversarial neural network, called SegAN, for the task of medical image segmentation. Since image segmentation requires dense, pixel-level labeling, the single scalar real/fake output of a classic GAN’s discriminator may be ineffective in producing stable and sufficient gradient feedback to the networks. Instead, we use a fully convolutional neural network as the segmentor to generate segmentation label maps, and propose a novel adversarial critic network with a multi-scale L1 loss function to force the critic and segmentor to learn both global and local features that capture long- and short-range spatial relationships between pixels. In our SegAN framework, the segmentor and critic networks are trained in an alternating fashion in a min-max game: The critic is trained by maximizing a multi-scale loss function, while the segmentor is trained with only gradients passed along by the critic, with the aim to minimize the multi-scale loss function. We show that such a SegAN framework is more effective and stable for the segmentation task, and it leads to better performance than the state-of-the-art U-net segmentation method. We tested our SegAN method using datasets from the MICCAI BRATS brain tumor segmentation challenge. Extensive experimental results demonstrate the effectiveness of the proposed SegAN with multi-scale loss: on BRATS 2013 SegAN gives performance comparable to the state-of-the-art for whole tumor and tumor core segmentation while achieves better precision and sensitivity for Gd-enhance tumor core segmentation; on BRATS 2015 SegAN achieves better performance than the state-of-the-art in both dice score and precision.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Although the pixel value ranges of medical images can vary, one can always normalize them to a certain value range such as [0,1], so it is compact.
 
Literatur
Zurück zum Zitat Adams, R, & Bischof, L. (1994). Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(6), 641–647.CrossRef Adams, R, & Bischof, L. (1994). Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(6), 641–647.CrossRef
Zurück zum Zitat Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence (6), 679–698. Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence (6), 679–698.
Zurück zum Zitat Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K. (2015). Semantic image segmentation with deep convolutional nets and fully connected crfs. In ICLR. arXiv:1412.7062. Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K. (2015). Semantic image segmentation with deep convolutional nets and fully connected crfs. In ICLR. arXiv:1412.​7062.
Zurück zum Zitat Cobzas, D., Birkbeck, N., Schmidt, M., Jagersand, M. (2007). Murtha A (2007) 3d variational brain tumor segmentation using a high dimensional feature set. In IEEE 11th international conference on computer vision. ICCV 2007 (pp. 1–8). IEEE. Cobzas, D., Birkbeck, N., Schmidt, M., Jagersand, M. (2007). Murtha A (2007) 3d variational brain tumor segmentation using a high dimensional feature set. In IEEE 11th international conference on computer vision. ICCV 2007 (pp. 1–8). IEEE.
Zurück zum Zitat Comaniciu, D., & Meer, P. (2002). Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619.CrossRef Comaniciu, D., & Meer, P. (2002). Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619.CrossRef
Zurück zum Zitat Geremia, E., Clatz, O, Menze, B. H., Konukoglu, E., Criminisi, A., Ayache, N. (2011). Spatial decision forests for ms lesion segmentation in multi-channel magnetic resonance images. NeuroImage, 57(2), 378–390.CrossRefPubMed Geremia, E., Clatz, O, Menze, B. H., Konukoglu, E., Criminisi, A., Ayache, N. (2011). Spatial decision forests for ms lesion segmentation in multi-channel magnetic resonance images. NeuroImage, 57(2), 378–390.CrossRefPubMed
Zurück zum Zitat Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (pp. 2672–2680). Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (pp. 2672–2680).
Zurück zum Zitat Gooya, A., Biros, G., Davatzikos, C. (2011). Deformable registration of glioma images using em algorithm and diffusion reaction modeling. IEEE Transactions on Medical Imaging, 30(2), 375–390.CrossRefPubMed Gooya, A., Biros, G., Davatzikos, C. (2011). Deformable registration of glioma images using em algorithm and diffusion reaction modeling. IEEE Transactions on Medical Imaging, 30(2), 375–390.CrossRefPubMed
Zurück zum Zitat Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P. M., Larochelle, H. (2017). Brain tumor segmentation with deep neural networks. Medical Image Analysis, 35, 18–31.CrossRefPubMed Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P. M., Larochelle, H. (2017). Brain tumor segmentation with deep neural networks. Medical Image Analysis, 35, 18–31.CrossRefPubMed
Zurück zum Zitat Isola, P., Zhu, J. Y., Zhou, T., Efros, A. A. (2016). Image-to-image translation with conditional adversarial networks. arXiv:161107004. Isola, P., Zhu, J. Y., Zhou, T., Efros, A. A. (2016). Image-to-image translation with conditional adversarial networks. arXiv:161107004.
Zurück zum Zitat Kamnitsas, K., Ledig, C., Newcombe, V. F., Simpson, J. P., Kane, A. D., Menon, D. K., Rueckert, D., Glocker, B. (2017). Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation. Medical Image Analysis, 36, 61–78.CrossRefPubMed Kamnitsas, K., Ledig, C., Newcombe, V. F., Simpson, J. P., Kane, A. D., Menon, D. K., Rueckert, D., Glocker, B. (2017). Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation. Medical Image Analysis, 36, 61–78.CrossRefPubMed
Zurück zum Zitat Kass, M., Witkin, A., Terzopoulos, D. (1988). Snakes: active contour models. International Journal of Computer Vision, 1(4), 321–331.CrossRef Kass, M., Witkin, A., Terzopoulos, D. (1988). Snakes: active contour models. International Journal of Computer Vision, 1(4), 321–331.CrossRef
Zurück zum Zitat Lee, C. H., Wang, S., Murtha, A., Brown, M., Greiner, R. (2008). Segmenting brain tumors using pseudo–conditional random fields. In Medical image computing and computer-assisted intervention–MICCAI 2008 (pp. 359–366). Lee, C. H., Wang, S., Murtha, A., Brown, M., Greiner, R. (2008). Segmenting brain tumors using pseudo–conditional random fields. In Medical image computing and computer-assisted intervention–MICCAI 2008 (pp. 359–366).
Zurück zum Zitat Lefohn, A., Cates, J., Whitaker, R. (2003). Interactive, gpu-based level sets for 3d segmentation. In Medical image computing and computer-assisted intervention-MICCAI 2003 (pp. 564–572). Lefohn, A., Cates, J., Whitaker, R. (2003). Interactive, gpu-based level sets for 3d segmentation. In Medical image computing and computer-assisted intervention-MICCAI 2003 (pp. 564–572).
Zurück zum Zitat Lin, G., Shen, C., van den Hengel, A., Reid, I. (2016). Efficient piecewise training of deep structured models for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3194–3203). Lin, G., Shen, C., van den Hengel, A., Reid, I. (2016). Efficient piecewise training of deep structured models for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3194–3203).
Zurück zum Zitat Long, J., Shelhamer, E., Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431–3440). Long, J., Shelhamer, E., Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431–3440).
Zurück zum Zitat Luc, P., Couprie, C., Chintala, S., Verbeek, J. (2016). Semantic segmentation using adversarial networks. arXiv:161108408. Luc, P., Couprie, C., Chintala, S., Verbeek, J. (2016). Semantic segmentation using adversarial networks. arXiv:161108408.
Zurück zum Zitat Malladi, R., Sethian, J. A., Vemuri, B. C. (1995). Shape modeling with front propagation: a level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(2), 158–175.CrossRef Malladi, R., Sethian, J. A., Vemuri, B. C. (1995). Shape modeling with front propagation: a level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(2), 158–175.CrossRef
Zurück zum Zitat Manjunath, B., & Chellappa, R. (1991). Unsupervised texture segmentation using markov random field models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(5), 478–482.CrossRef Manjunath, B., & Chellappa, R. (1991). Unsupervised texture segmentation using markov random field models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(5), 478–482.CrossRef
Zurück zum Zitat Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., et al. (2015). The multimodal brain tumor image segmentation benchmark (brats). IEEE Transactions on Medical Imaging, 34(10), 1993–2024.CrossRefPubMed Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., et al. (2015). The multimodal brain tumor image segmentation benchmark (brats). IEEE Transactions on Medical Imaging, 34(10), 1993–2024.CrossRefPubMed
Zurück zum Zitat Mumford, D., & Shah, J. (1989). Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 42(5), 577–685.CrossRef Mumford, D., & Shah, J. (1989). Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 42(5), 577–685.CrossRef
Zurück zum Zitat Noh, H., Hong, S., Han, B. (2015). Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE international conference on computer vision (pp. 1520–1528). Noh, H., Hong, S., Han, B. (2015). Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE international conference on computer vision (pp. 1520–1528).
Zurück zum Zitat Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9 (1), 62–66.CrossRef Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9 (1), 62–66.CrossRef
Zurück zum Zitat Pereira, S., Pinto, A., Alves, V., Silva, C. A. (2016). Brain tumor segmentation using convolutional neural networks in mri images. IEEE Transactions on Medical Imaging, 35(5), 1240–1251.CrossRefPubMed Pereira, S., Pinto, A., Alves, V., Silva, C. A. (2016). Brain tumor segmentation using convolutional neural networks in mri images. IEEE Transactions on Medical Imaging, 35(5), 1240–1251.CrossRefPubMed
Zurück zum Zitat Radford, A., Metz, L., Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434. Radford, A., Metz, L., Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.​06434.
Zurück zum Zitat Ronneberger, O, Fischer, P, Brox, T. (2015). U-net: convolutional networks for biomedical image segmentation. In International conference on medical image computing and computer-assisted intervention. Springer (pp. 234–241). Ronneberger, O, Fischer, P, Brox, T. (2015). U-net: convolutional networks for biomedical image segmentation. In International conference on medical image computing and computer-assisted intervention. Springer (pp. 234–241).
Zurück zum Zitat Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X. (2016). Improved techniques for training gans. In Advances in neural information processing systems (pp. 2226–2234). Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X. (2016). Improved techniques for training gans. In Advances in neural information processing systems (pp. 2226–2234).
Zurück zum Zitat Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.CrossRef Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.CrossRef
Zurück zum Zitat Wels, M., Carneiro, G., Aplas, A., Huber, M., Hornegger, J., Comaniciu, D. (2008). A discriminative model-constrained graph cuts approach to fully automated pediatric brain tumor segmentation in 3-d mri. In Medical image computing and computer-assisted intervention–MICCAI 2008 (pp. 67–75). Wels, M., Carneiro, G., Aplas, A., Huber, M., Hornegger, J., Comaniciu, D. (2008). A discriminative model-constrained graph cuts approach to fully automated pediatric brain tumor segmentation in 3-d mri. In Medical image computing and computer-assisted intervention–MICCAI 2008 (pp. 67–75).
Zurück zum Zitat Zhang, H., Xu, T., Li, H., Zhang, S., Huang, X., Wang, X., Metaxas, D. (2017). Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks. IEEE Int. Conf. Comput. Vision (ICCV) 5907–5915. Zhang, H., Xu, T., Li, H., Zhang, S., Huang, X., Wang, X., Metaxas, D. (2017). Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks. IEEE Int. Conf. Comput. Vision (ICCV) 5907–5915.
Metadaten
Titel
SegAN: Adversarial Network with Multi-scale L1 Loss for Medical Image Segmentation
verfasst von
Yuan Xue
Tao Xu
Han Zhang
L. Rodney Long
Xiaolei Huang
Publikationsdatum
03.05.2018
Verlag
Springer US
Erschienen in
Neuroinformatics / Ausgabe 3-4/2018
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-018-9377-x

Weitere Artikel der Ausgabe 3-4/2018

Neuroinformatics 3-4/2018 Zur Ausgabe