Skip to main content
Erschienen in: Energy Efficiency 2/2019

07.06.2018 | Original Article

The transition in energy demand sectors to limit global warming to 1.5 °C

verfasst von: Aurélie Méjean, Céline Guivarch, Julien Lefèvre, Meriem Hamdi-Cherif

Erschienen in: Energy Efficiency | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Achieving an emission pathway that would be compatible with limiting the global temperature increase to 1.5 °C compared with pre-industrial levels would require unprecedented changes in the economy and energy use and supply. This paper describes how such a transition may impact the dynamics of sectoral emissions. We compare contrasted global scenarios in terms of the date of emission peaks, energy efficiency, availability of low-carbon energy technologies, and fossil fuels, using the global integrated assessment model IMACLIM-R. The results suggest that it is impossible to delay the peak of global emissions until 2030 while remaining on a path compatible with the 1.5 °C objective. We show that stringent policies in energy-demand sectors—industry and transportation especially—are needed in the short run to trigger an immediate peak of global emissions and increase the probability to meet the 1.5 °C objective. Such sector-specific policies would contribute to lowering energy demand and would reduce the level of the carbon price required to reach the same temperature objective. Bringing forward the peak of global emissions does not lead to a homothetic adjustment of all sectoral emission pathways: an early peak of global emissions implies the fast decarbonization of the electricity sector and early emission reductions in energy-demand sectors—mainly industry and transportation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Note that the residential sector refers to private housing only and is separate from the service (or composite) sector. We left the service sector out of the analysis as it represents less than 5% of total emissions in 2015 and as the representation of this sector is less detailed than other sectors in IMACLIM-R.
 
3
See Bibas et al. (2015) for a thorough description of the representation of technical change in IMACLIM-R.
 
4
Non-CO2 GHG gases and emissions from land-use change are not modeled explicitly in this version of the model.
 
5
Note that global emissions are imposed over that period but not the sectoral shares of those emissions.
 
6
One family corresponds to one global emission constraint with a peak at year 2016, 2020, 2025, or 2030 and eight different combinations of technico-economic parameters.
 
7
Non-CO2 GHG gases and emissions from land-use change are not modeled explicitly in this version of the model. Cumulative CO2 emissions over 2010–2050 are compared with CO2 budgets from studies that account for the impact of non-CO2 gases on warming. Implicitly, this means that we are assuming non-CO2 gases emissions to be similar to the trends from those studies.
 
8
Threshold Exceedance Budget (TEB) and Threshold Avoidance Budget (TAB) are defined as follows: “TEB is the amount of cumulative carbon emissions at the time a specific temperature threshold is exceeded with a given probability in a particular multi-gas emission scenarios,” “TAB is the amount of cumulative carbon emissions over a given time period of a multi-gas emission scenario that limits global-mean temperature increase to below a specific threshold with a given probability” (definition from Rogelj et al. (2016), which detail the different types of carbon budget concepts used and their implications). TEB is expected to be higher than TAB.
 
9
Note that the results show direct emissions for the transportation and residential sector (i.e., excluding for instance the emissions associated with the production of electricity used for transportation). We account for both direct and indirect emissions in the industry sector.
 
Literatur
Zurück zum Zitat Abrahamse, W., Steg, L., Vlek, C., & Rothengatter, T. (2005). A review of intervention studies aimed at household energy conservation. Journal of Environmental Psychology, 25, 273–291.CrossRef Abrahamse, W., Steg, L., Vlek, C., & Rothengatter, T. (2005). A review of intervention studies aimed at household energy conservation. Journal of Environmental Psychology, 25, 273–291.CrossRef
Zurück zum Zitat Allcott, H., & Mullainathan, S. (2010). Behavior and Energy Policy. Science, 327, 1204–1205.CrossRef Allcott, H., & Mullainathan, S. (2010). Behavior and Energy Policy. Science, 327, 1204–1205.CrossRef
Zurück zum Zitat Anderson, K., & Peters, G. (2016). The trouble with negative emissions. Science, 354(6309), 182–183.CrossRef Anderson, K., & Peters, G. (2016). The trouble with negative emissions. Science, 354(6309), 182–183.CrossRef
Zurück zum Zitat Bager, S., & Mundaca, L. (2017). Making “Smart Meters” smarter? Insights from a behavioural economics pilot field experiment in Copenhagen, Denmark. Energy Research & Social Science, 28, 68–76.CrossRef Bager, S., & Mundaca, L. (2017). Making “Smart Meters” smarter? Insights from a behavioural economics pilot field experiment in Copenhagen, Denmark. Energy Research & Social Science, 28, 68–76.CrossRef
Zurück zum Zitat Bertoldi, P., Rezessy, S., Lees, E., Baudry, P., Jeandel, A., & Labanca, N. (2010). Energy supplier obligations and white certificate schemes: comparative analysis of experiences in the European Union. Energy Policy, 38, 1455–1469.CrossRef Bertoldi, P., Rezessy, S., Lees, E., Baudry, P., Jeandel, A., & Labanca, N. (2010). Energy supplier obligations and white certificate schemes: comparative analysis of experiences in the European Union. Energy Policy, 38, 1455–1469.CrossRef
Zurück zum Zitat Bertoldi, P., Rezessy, S., & Oikonomou, V. (2013). Rewarding energy savings rather than energy efficiency: exploring the concept of a feed-in tariff for energy savings. Energy Policy, 56, 526–535.CrossRef Bertoldi, P., Rezessy, S., & Oikonomou, V. (2013). Rewarding energy savings rather than energy efficiency: exploring the concept of a feed-in tariff for energy savings. Energy Policy, 56, 526–535.CrossRef
Zurück zum Zitat Bibas, R., Méjean, A., & Hamdi-Cherif, M. (2015). Energy efficiency policies and the timing of action: an assessment of climate mitigation costs. Technological Forecasting and Social Change, 90(Part A), 137–152.CrossRef Bibas, R., Méjean, A., & Hamdi-Cherif, M. (2015). Energy efficiency policies and the timing of action: an assessment of climate mitigation costs. Technological Forecasting and Social Change, 90(Part A), 137–152.CrossRef
Zurück zum Zitat Chapman, L. (2007). Transport and climate change: a review. Journal of Transport Geography, 15, 354–367.CrossRef Chapman, L. (2007). Transport and climate change: a review. Journal of Transport Geography, 15, 354–367.CrossRef
Zurück zum Zitat Clarke L., K. Jiang, K. Akimoto, M. Babiker, G. Blanford, K. Fisher-Vanden, J.-C. Hourcade, V. Krey, E. Kriegler, A. Löschel, D. McCollum, S. Paltsev, S. Rose, P. R. Shukla, M. Tavoni, B. C. C. van der Zwaan, and D.P. van Vuuren, 2014. Assessing transformation pathways. In: Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, UK. Clarke L., K. Jiang, K. Akimoto, M. Babiker, G. Blanford, K. Fisher-Vanden, J.-C. Hourcade, V. Krey, E. Kriegler, A. Löschel, D. McCollum, S. Paltsev, S. Rose, P. R. Shukla, M. Tavoni, B. C. C. van der Zwaan, and D.P. van Vuuren, 2014. Assessing transformation pathways. In: Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, UK.
Zurück zum Zitat Creutzig, F., McGlynn, E., Minx, J., & Edenhofer, O. (2011). Climate policies for road transport revisited (I): Evaluation of the current framework. Energy Policy, 39(5), 2396–2406.CrossRef Creutzig, F., McGlynn, E., Minx, J., & Edenhofer, O. (2011). Climate policies for road transport revisited (I): Evaluation of the current framework. Energy Policy, 39(5), 2396–2406.CrossRef
Zurück zum Zitat Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Kadner, S., Minx, J. C., Brunner, S., Agrawala, S., Baiocchi, G., Bashmakov, I. A., Blanco, G., Broome, J., Bruckner, T., Bustamante, M., Clarke, L., Conte Grand, M., Creutzig, F., Cruz-Núñez, X., Dhakal, S., Dubash, N. K., Eickemeier, P., Farahani, E., Fischedick, M., Fleurbaey, M., Gerlagh, R., Gómez-Echeverri, L., Gupta, S., Harnisch, J., Jiang, K., Jotzo, F., Kartha, S., Klasen, S., Kolstad, C., Krey, V., Kunreuther, H., Lucon, O., Masera, O., Mulugetta, Y., Norgaard, R. B., Patt, A., Ravindranath, N. H., Riahi, K., Roy, J., Sagar, A., Schaeffer, R., Schlömer, S., Seto, K. C., Seyboth, K., Sims, R., Smith, P., Somanathan, E., Stavins, R., von Stechow, C., Sterner, T., Sugiyama, T., Suh, S., Ürge-Vorsatz, D., Urama, K., Venables, A., Victor, D. G., Weber, E., Zhou, D., Zou, J., & Zwickel, T. (2014). Technical summary. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, & J. C. Minx (Eds.), Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press. Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Kadner, S., Minx, J. C., Brunner, S., Agrawala, S., Baiocchi, G., Bashmakov, I. A., Blanco, G., Broome, J., Bruckner, T., Bustamante, M., Clarke, L., Conte Grand, M., Creutzig, F., Cruz-Núñez, X., Dhakal, S., Dubash, N. K., Eickemeier, P., Farahani, E., Fischedick, M., Fleurbaey, M., Gerlagh, R., Gómez-Echeverri, L., Gupta, S., Harnisch, J., Jiang, K., Jotzo, F., Kartha, S., Klasen, S., Kolstad, C., Krey, V., Kunreuther, H., Lucon, O., Masera, O., Mulugetta, Y., Norgaard, R. B., Patt, A., Ravindranath, N. H., Riahi, K., Roy, J., Sagar, A., Schaeffer, R., Schlömer, S., Seto, K. C., Seyboth, K., Sims, R., Smith, P., Somanathan, E., Stavins, R., von Stechow, C., Sterner, T., Sugiyama, T., Suh, S., Ürge-Vorsatz, D., Urama, K., Venables, A., Victor, D. G., Weber, E., Zhou, D., Zou, J., & Zwickel, T. (2014). Technical summary. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, & J. C. Minx (Eds.), Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
Zurück zum Zitat Faruqui, A., & Sergici, S. (2010). Household response to dynamic pricing of electricity: a survey of 15 experiments. Journal of Regulatory Economics, 38, 193–225.CrossRef Faruqui, A., & Sergici, S. (2010). Household response to dynamic pricing of electricity: a survey of 15 experiments. Journal of Regulatory Economics, 38, 193–225.CrossRef
Zurück zum Zitat Figueres, C., Schellnhuber, H. J., Whiteman, G., Rockström, J., Hobley, A., & Rahmstorf, S. (2017). Three years to safeguard our climate. Nature, 546(7660), 593–595.CrossRef Figueres, C., Schellnhuber, H. J., Whiteman, G., Rockström, J., Hobley, A., & Rahmstorf, S. (2017). Three years to safeguard our climate. Nature, 546(7660), 593–595.CrossRef
Zurück zum Zitat Fuss, S., Canadell, J. G., Peters, G. P., Tavoni, M., Andrew, R. M., Ciais, P., Jackson, R. B., Jones, C. D., Kraxner, F., & Nakicenovic, N. (2014). Betting on negative emissions. Nature Climate Change, 4(10), 850–853.CrossRef Fuss, S., Canadell, J. G., Peters, G. P., Tavoni, M., Andrew, R. M., Ciais, P., Jackson, R. B., Jones, C. D., Kraxner, F., & Nakicenovic, N. (2014). Betting on negative emissions. Nature Climate Change, 4(10), 850–853.CrossRef
Zurück zum Zitat Goodwin, P., Dargay, J., & Hanly, M. (2004). Elasticities of road traffic and fuel consumption with respect to price and income: a review. Transport Reviews, 24(3), 275–292.CrossRef Goodwin, P., Dargay, J., & Hanly, M. (2004). Elasticities of road traffic and fuel consumption with respect to price and income: a review. Transport Reviews, 24(3), 275–292.CrossRef
Zurück zum Zitat Grubler, A., Bai, X., Buettner, T., Dhakal, S., Fisk, D., Ichinose, T., Keristead, J., Sammer, G., Satterthwaite, D., Schulz, N., Shah, N., Steinberger, J., & Weiz, H. (2012). Urban energy systems. In Global energy assessment—toward a sustainable future (pp. 1307–1400). Cambridge, UK: International Institute for Applied Systems Analysis and Cambridge University Press.CrossRef Grubler, A., Bai, X., Buettner, T., Dhakal, S., Fisk, D., Ichinose, T., Keristead, J., Sammer, G., Satterthwaite, D., Schulz, N., Shah, N., Steinberger, J., & Weiz, H. (2012). Urban energy systems. In Global energy assessment—toward a sustainable future (pp. 1307–1400). Cambridge, UK: International Institute for Applied Systems Analysis and Cambridge University Press.CrossRef
Zurück zum Zitat Guivarch, C., & Hallegatte, S. (2013). 2C or not 2C? Global Environmental Change, 23(1), 179–192.CrossRef Guivarch, C., & Hallegatte, S. (2013). 2C or not 2C? Global Environmental Change, 23(1), 179–192.CrossRef
Zurück zum Zitat Guivarch, C., Monjon, S., Rozenberg, J., & Vogt-Schilb, A. (2015). Would climate policy improve the European energy security? Climate Change Economics, 6, 1550008.CrossRef Guivarch, C., Monjon, S., Rozenberg, J., & Vogt-Schilb, A. (2015). Would climate policy improve the European energy security? Climate Change Economics, 6, 1550008.CrossRef
Zurück zum Zitat Harmelink, M., Nilsson, L., & Harmsen, R. (2008). Theory-based policy evaluation of 20 energy efficiency instruments. Energy Efficiency, 1, 131–148.CrossRef Harmelink, M., Nilsson, L., & Harmsen, R. (2008). Theory-based policy evaluation of 20 energy efficiency instruments. Energy Efficiency, 1, 131–148.CrossRef
Zurück zum Zitat Hansen, J., Sato, M., Kharecha, P., Beerling, D., Berner, R., Masson-Delmotte, V., Pagani, M., Raymo, M., Royer, D. L., & Zachos, J. C. (2008). Target atmospheric CO2: where should humanity aim? The Open Atmospheric Science Journal., 2(1), 217–231.CrossRef Hansen, J., Sato, M., Kharecha, P., Beerling, D., Berner, R., Masson-Delmotte, V., Pagani, M., Raymo, M., Royer, D. L., & Zachos, J. C. (2008). Target atmospheric CO2: where should humanity aim? The Open Atmospheric Science Journal., 2(1), 217–231.CrossRef
Zurück zum Zitat Hare, W. L., Cramer, W., Schaeffer, M., Battaglini, A., & Jaeger, C. C. (2011). Climate hotspots: key vulnerable regions, climate change and limits to warming. Regional Environmental Change, 11(Supplement 1), 1–13.CrossRef Hare, W. L., Cramer, W., Schaeffer, M., Battaglini, A., & Jaeger, C. C. (2011). Climate hotspots: key vulnerable regions, climate change and limits to warming. Regional Environmental Change, 11(Supplement 1), 1–13.CrossRef
Zurück zum Zitat IPCC. (2014). Climate change 2014: mitigation of climate change. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, & J. C. Minx (Eds.), Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press. IPCC. (2014). Climate change 2014: mitigation of climate change. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, & J. C. Minx (Eds.), Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
Zurück zum Zitat IEA, 2008. World energy outlook. Tech. rep., IEA/OECD, Paris, France. IEA, 2008. World energy outlook. Tech. rep., IEA/OECD, Paris, France.
Zurück zum Zitat Iyer, G., Hultman, N., Eom, J., McJeon, H., Patel, P., & Clarke, L. (2015). Diffusion of low-carbon technologies and the feasibility of long-term climate targets. Technological Forecasting and Social Change, 90(Part A), 103–118.CrossRef Iyer, G., Hultman, N., Eom, J., McJeon, H., Patel, P., & Clarke, L. (2015). Diffusion of low-carbon technologies and the feasibility of long-term climate targets. Technological Forecasting and Social Change, 90(Part A), 103–118.CrossRef
Zurück zum Zitat Jackson, R. B., Canadell, J. G., Le Quéré, C., Andrew, R. M., Korsbakken, J. I., Peters, G. P., & Nakicenovic, N. (2016). Reaching peak emissions. Nature Climate Change, 6(1), 710.CrossRef Jackson, R. B., Canadell, J. G., Le Quéré, C., Andrew, R. M., Korsbakken, J. I., Peters, G. P., & Nakicenovic, N. (2016). Reaching peak emissions. Nature Climate Change, 6(1), 710.CrossRef
Zurück zum Zitat Kriegler, E., Petermann, M., Krey, V., Schwanitz, V. J., Luderer, G., Ashina, S., Bosetti, V., et al. (2015). Diagnostic indicators for integrated assessment models of climate policy. Technological Forecasting and Social Change, 90(Part A), 45–61.CrossRef Kriegler, E., Petermann, M., Krey, V., Schwanitz, V. J., Luderer, G., Ashina, S., Bosetti, V., et al. (2015). Diagnostic indicators for integrated assessment models of climate policy. Technological Forecasting and Social Change, 90(Part A), 45–61.CrossRef
Zurück zum Zitat Kunreuther, H., & Weber, E. U. (2014). Aiding Decision Making to Reduce the Impacts of Climate Change. Journal of Consumer Policy, 37, 397–411.CrossRef Kunreuther, H., & Weber, E. U. (2014). Aiding Decision Making to Reduce the Impacts of Climate Change. Journal of Consumer Policy, 37, 397–411.CrossRef
Zurück zum Zitat Le Quéré, C., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Peters, G. P., Manning, A. C., Boden, T. A., Tans, P. P., & Houghton, R. A. (2016). Global carbon budget 2016. Earth System Science Data, 8(2), 605–649.CrossRef Le Quéré, C., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Peters, G. P., Manning, A. C., Boden, T. A., Tans, P. P., & Houghton, R. A. (2016). Global carbon budget 2016. Earth System Science Data, 8(2), 605–649.CrossRef
Zurück zum Zitat Luderer, G., Pietzcker, R. C., Bertram, C., Kriegler, E., Meinshausen, M., & Edenhofer, O. (2013). Economic mitigation challenges: how further delay closes the door for achieving climate targets. Environmental Research Letters, 8(3), 034033.CrossRef Luderer, G., Pietzcker, R. C., Bertram, C., Kriegler, E., Meinshausen, M., & Edenhofer, O. (2013). Economic mitigation challenges: how further delay closes the door for achieving climate targets. Environmental Research Letters, 8(3), 034033.CrossRef
Zurück zum Zitat McGilligan, C., Sunikka-Blank, M., & Natarajan, S. (2010). Subsidy as an agent to enhance the effectiveness of the energy performance certificate. Energy Policy, 38, 1272–1287.CrossRef McGilligan, C., Sunikka-Blank, M., & Natarajan, S. (2010). Subsidy as an agent to enhance the effectiveness of the energy performance certificate. Energy Policy, 38, 1272–1287.CrossRef
Zurück zum Zitat Millar, R. J., Fuglestvedt, J. S., Friedlingstein, P., Rogelj, J., Grubb, M. J., Matthews, H. D., Skeie, R. B., Forster, P. M., Frame, D. J., & Allen, M. R. (2017). Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nature Geoscience, 10, 741–747.CrossRef Millar, R. J., Fuglestvedt, J. S., Friedlingstein, P., Rogelj, J., Grubb, M. J., Matthews, H. D., Skeie, R. B., Forster, P. M., Frame, D. J., & Allen, M. R. (2017). Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nature Geoscience, 10, 741–747.CrossRef
Zurück zum Zitat Pichert, D., & Katsikopoulos, K. V. (2008). Green defaults: Information presentation and pro-environmental behaviour. Journal of Environmental Psychology, 28, 63–73.CrossRef Pichert, D., & Katsikopoulos, K. V. (2008). Green defaults: Information presentation and pro-environmental behaviour. Journal of Environmental Psychology, 28, 63–73.CrossRef
Zurück zum Zitat Riahi, K., Kriegler, E., Johnson, N., Bertram, C., den Elzen, M., Eom, J., Schaeffer, M., et al. (2015). Locked into Copenhagen pledges—implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technological Forecasting and Social Change, 90(Part A), 8–23.CrossRef Riahi, K., Kriegler, E., Johnson, N., Bertram, C., den Elzen, M., Eom, J., Schaeffer, M., et al. (2015). Locked into Copenhagen pledges—implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technological Forecasting and Social Change, 90(Part A), 8–23.CrossRef
Zurück zum Zitat Rogelj, J., Popp, A., Calvin, K. V., Luderer, G., Emmerling, J., Gernaat, D., Fujimori, S., Strefler, J., Hasegawa, T., Marangoni, G., Krey, V., Kriegler, E., Riahi, K., van Vuuren, D. P., Doelman, J., Drouet, L., Edmonds, J., Fricko, O., Harmsen, M., Havlík, P., Humpenöder, F., Stehfest, E., & Tavoni, M. (2018). Scenarios towards limiting global mean temperature increase below 1.5 °C. Nature Climate Change, 8, 325–332.CrossRef Rogelj, J., Popp, A., Calvin, K. V., Luderer, G., Emmerling, J., Gernaat, D., Fujimori, S., Strefler, J., Hasegawa, T., Marangoni, G., Krey, V., Kriegler, E., Riahi, K., van Vuuren, D. P., Doelman, J., Drouet, L., Edmonds, J., Fricko, O., Harmsen, M., Havlík, P., Humpenöder, F., Stehfest, E., & Tavoni, M. (2018). Scenarios towards limiting global mean temperature increase below 1.5 °C. Nature Climate Change, 8, 325–332.CrossRef
Zurück zum Zitat Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M., Krey, V., & Riahi, K. (2015). Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nature Climate Change, 5(6), 519–527.CrossRef Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M., Krey, V., & Riahi, K. (2015). Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nature Climate Change, 5(6), 519–527.CrossRef
Zurück zum Zitat Rogelj, J., Schaeffer, M., Friedlingstein, P., Gillett, N. P., van Vuuren, D. P., Riahi, K., Allen, M., & Knutti, R. (2016). Differences between carbon budget estimates unravelled. Nature Climate Change, 6, 245–252.CrossRef Rogelj, J., Schaeffer, M., Friedlingstein, P., Gillett, N. P., van Vuuren, D. P., Riahi, K., Allen, M., & Knutti, R. (2016). Differences between carbon budget estimates unravelled. Nature Climate Change, 6, 245–252.CrossRef
Zurück zum Zitat Rozenberg, J., Hallegatte, S., Vogt-Schilb, A., Sassi, O., Guivarch, C., Waisman, H., & Hourcade, J. C. (2010). Climate policies as a hedge against the uncertainty on future oil supply. Climatic Change, 101(3–4), 663–668.CrossRef Rozenberg, J., Hallegatte, S., Vogt-Schilb, A., Sassi, O., Guivarch, C., Waisman, H., & Hourcade, J. C. (2010). Climate policies as a hedge against the uncertainty on future oil supply. Climatic Change, 101(3–4), 663–668.CrossRef
Zurück zum Zitat Schafer, A., & Victor, D. G. (2000). The future mobility of the world population. Transportation Research Part A: Policy and Practice, 34, 171–205. Schafer, A., & Victor, D. G. (2000). The future mobility of the world population. Transportation Research Part A: Policy and Practice, 34, 171–205.
Zurück zum Zitat Schafer, A. (2012). Introducing Behavioral Change in Transportation into Energy/Economy/Environment Models (World Bank Policy Research Working Paper No. 6234). Washington, D.C: World Bank.CrossRef Schafer, A. (2012). Introducing Behavioral Change in Transportation into Energy/Economy/Environment Models (World Bank Policy Research Working Paper No. 6234). Washington, D.C: World Bank.CrossRef
Zurück zum Zitat Sims, R., Schaeffer, R., Creutzig, F., Cruz-Núñez, X., D’Agosto, M., Dimitriu, D., Figueroa Meza, M. J., Fulton, L., Kobayashi, S., Lah, O., McKinnon, A., Newman, P., Ouyang, M., Schauer, J. J., Sperling, D., & Tiwari, G. (2014). Transport. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, & J. C. Minx (Eds.), Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press. Sims, R., Schaeffer, R., Creutzig, F., Cruz-Núñez, X., D’Agosto, M., Dimitriu, D., Figueroa Meza, M. J., Fulton, L., Kobayashi, S., Lah, O., McKinnon, A., Newman, P., Ouyang, M., Schauer, J. J., Sperling, D., & Tiwari, G. (2014). Transport. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, & J. C. Minx (Eds.), Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
Zurück zum Zitat Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., Kato, E., Jackson, R. B., Cowie, A., & Kriegler, E. (2016). Biophysical and economic limits to negative CO2 emissions. Nature Climate Change, 6(1), 42–50.CrossRef Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., Kato, E., Jackson, R. B., Cowie, A., & Kriegler, E. (2016). Biophysical and economic limits to negative CO2 emissions. Nature Climate Change, 6(1), 42–50.CrossRef
Zurück zum Zitat Stocker, T. F. (2013). The closing door of climate targets. Science, 339(6117), 280–282.CrossRef Stocker, T. F. (2013). The closing door of climate targets. Science, 339(6117), 280–282.CrossRef
Zurück zum Zitat Suzuki, M. (2015). Identifying roles of international institutions in clean energy technology innovation and diffusion in the developing countries: matching barriers with roles of the institutions. Journal of Cleaner Production, 98, 229–240.CrossRef Suzuki, M. (2015). Identifying roles of international institutions in clean energy technology innovation and diffusion in the developing countries: matching barriers with roles of the institutions. Journal of Cleaner Production, 98, 229–240.CrossRef
Zurück zum Zitat Tanaka, K. (2011). Review of policies and measures for energy efficiency in industry sector. Energy Policy, 39, 6532–6550.CrossRef Tanaka, K. (2011). Review of policies and measures for energy efficiency in industry sector. Energy Policy, 39, 6532–6550.CrossRef
Zurück zum Zitat van Vuuren, D., den Elzen, M., Lucas, P., Eickhout, B., Strengers, B., van Ruijven, B., Wonink, S., & van Houdt, R. (2007). Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Climatic Change, 81, 119–159.CrossRef van Vuuren, D., den Elzen, M., Lucas, P., Eickhout, B., Strengers, B., van Ruijven, B., Wonink, S., & van Houdt, R. (2007). Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Climatic Change, 81, 119–159.CrossRef
Zurück zum Zitat Waisman, H., Guivarch, C., & Lecocq, F. (2013). The transportation sector and low-carbon growth pathways: modelling urban, infrastructure, and spatial determinants of mobility. Climate Policy, 13(1), 106–129.CrossRef Waisman, H., Guivarch, C., & Lecocq, F. (2013). The transportation sector and low-carbon growth pathways: modelling urban, infrastructure, and spatial determinants of mobility. Climate Policy, 13(1), 106–129.CrossRef
Zurück zum Zitat Waisman, H., Guivarch, C., Grazi, F., & Hourcade, J. C. (2012). The IMACLIM-R model: infrastructures, technical inertia and the costs of low carbon futures under imperfect foresight. Climatic Change, 114(1), 101–120.CrossRef Waisman, H., Guivarch, C., Grazi, F., & Hourcade, J. C. (2012). The IMACLIM-R model: infrastructures, technical inertia and the costs of low carbon futures under imperfect foresight. Climatic Change, 114(1), 101–120.CrossRef
Zurück zum Zitat World Bank and Ecofys. 2017. Carbon pricing watch 2017. Washington, DC: World Bank. World Bank and Ecofys. 2017. Carbon pricing watch 2017. Washington, DC: World Bank.
Zurück zum Zitat Zhou, N., McNeil, M., & Levine, M. (2011). Assessment of building energy-saving policies and programs in China during the 11th five year plan. Berkeley, CA: Lawrence Berkeley National Laboratory 19 pp.CrossRef Zhou, N., McNeil, M., & Levine, M. (2011). Assessment of building energy-saving policies and programs in China during the 11th five year plan. Berkeley, CA: Lawrence Berkeley National Laboratory 19 pp.CrossRef
Zurück zum Zitat Grübler, A., Nakicenovic, N., & Victor, D. G. (May 1999). Dynamics of energy technologies and global change. Energy Policy, 27(5), 247–280.CrossRef Grübler, A., Nakicenovic, N., & Victor, D. G. (May 1999). Dynamics of energy technologies and global change. Energy Policy, 27(5), 247–280.CrossRef
Zurück zum Zitat IEA, 2007. World energy outlook. Tech. rep., IEA/OECD, Paris, France. IEA, 2007. World energy outlook. Tech. rep., IEA/OECD, Paris, France.
Metadaten
Titel
The transition in energy demand sectors to limit global warming to 1.5 °C
verfasst von
Aurélie Méjean
Céline Guivarch
Julien Lefèvre
Meriem Hamdi-Cherif
Publikationsdatum
07.06.2018
Verlag
Springer Netherlands
Erschienen in
Energy Efficiency / Ausgabe 2/2019
Print ISSN: 1570-646X
Elektronische ISSN: 1570-6478
DOI
https://doi.org/10.1007/s12053-018-9682-0

Weitere Artikel der Ausgabe 2/2019

Energy Efficiency 2/2019 Zur Ausgabe