Skip to main content
Erschienen in: Peer-to-Peer Networking and Applications 6/2015

01.11.2015

A stochastic epidemiological model for the propagation of active worms considering the dynamicity of network topology

verfasst von: Ahmad Jafarabadi, Mohammad Abdollahi Azgomi

Erschienen in: Peer-to-Peer Networking and Applications | Ausgabe 6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Topology-aware active worms, which use topological scanning for finding their victims, are one of the most serious threats in the Internet. Peer-to-peer (P2P) networks and applications are suitable environments for the spread of topology-aware active worms. Several models for the propagation behavior of these threats exist in the literature. Discrete-time models are usually more accurate than the continuous ones due to the nature of worm propagation, which is inherently a discrete-time process. On the other hand, as the propagation of worms is a stochastic process, the stochastic models enable us to study the stochastic characteristics of worm propagation process and are definitely useful. To the best of our knowledge, no stochastic model for the topology-aware active worm propagation has been developed yet. Also, none of the existing models consider the dynamic changes of network topology during the spread of worms. It is important that the network topology be taken into account as a key parameter in the model and at the same time, complex computations should be avoided. These are two important goals of this work, which were not considered in the existing models. In this paper, we introduce a new stochastic and discrete-time model for topology-aware active worm propagation (abbreviated as STAWP). The STAWP model considers the dynamicity of network topology and the join and leave of hosts in a simple manner. We have also extended the existing topology logic matrix (TLM) simulative model in order to meet the goals of the STAWP model. Comparing the results of our experiments using this extended model (i.e., extended TLM or ETLM) with the STAWP model, shows that their behaviors are nearly the same, which can be used to validate both models. Using the STAWP model, we have investigated the impact of several parameters in topology-aware active worm propagation process, the results of which are also presented in this paper.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fan X, Xiang Y (2010) Modeling the propagation of peer-to-peer worms. Futur Gener Comput Syst 26(8):1433–1443CrossRef Fan X, Xiang Y (2010) Modeling the propagation of peer-to-peer worms. Futur Gener Comput Syst 26(8):1433–1443CrossRef
2.
Zurück zum Zitat Xiang Y, Fan X, Zhu WT (2009) Propagation of active worms: a survey. Int J Comput Syst Sci Eng 24(3):157–172MATH Xiang Y, Fan X, Zhu WT (2009) Propagation of active worms: a survey. Int J Comput Syst Sci Eng 24(3):157–172MATH
3.
Zurück zum Zitat Yu W (2004) Analyze the worm-based attack in large scale P2P. In Proceedings of the Eighth IEEE International Symposium on High Assurance Systems Engineering, College Station, TX, pp. 308–309 Yu W (2004) Analyze the worm-based attack in large scale P2P. In Proceedings of the Eighth IEEE International Symposium on High Assurance Systems Engineering, College Station, TX, pp. 308–309
4.
Zurück zum Zitat Anderson RM, May RM, Anderson B (1992) Infectious diseases of humans: dynamics and control. Oxford Science, New York Anderson RM, May RM, Anderson B (1992) Infectious diseases of humans: dynamics and control. Oxford Science, New York
5.
Zurück zum Zitat Hatahet S, Bouabdallah A, Challal Y (2010) A new worm propagation threat in BitTorrent: modeling and analysis. Telecommun Syst 45(2–3):95–109CrossRef Hatahet S, Bouabdallah A, Challal Y (2010) A new worm propagation threat in BitTorrent: modeling and analysis. Telecommun Syst 45(2–3):95–109CrossRef
6.
Zurück zum Zitat Jafarabadi A, Azgomi MA (2011) On the impacts of join and leave on the propagation ratio of topology-aware active worms. In Proceedingd of the 4th International Conference on Security of Information and Networks (SIN′11), Sydney, pp. 209–214 Jafarabadi A, Azgomi MA (2011) On the impacts of join and leave on the propagation ratio of topology-aware active worms. In Proceedingd of the 4th International Conference on Security of Information and Networks (SIN′11), Sydney, pp. 209–214
7.
Zurück zum Zitat Jafarabadi A, Azgomi MA (2011) An SIR model for the propagation of topology-aware active worms considering the join and leave of hosts. In Proceedings of the 7th International Conference on Information Assurance and Security (IAS′11), Malacca, pp. 204–209 Jafarabadi A, Azgomi MA (2011) An SIR model for the propagation of topology-aware active worms considering the join and leave of hosts. In Proceedings of the 7th International Conference on Information Assurance and Security (IAS′11), Malacca, pp. 204–209
8.
Zurück zum Zitat Yu W, Wang X, Xuan D, Lee D (2006) Effective detection of active worms with varying scan rate. In Proceedings of the 2006 Securecomm and Workshops, Baltimore, pp. 1–10 Yu W, Wang X, Xuan D, Lee D (2006) Effective detection of active worms with varying scan rate. In Proceedings of the 2006 Securecomm and Workshops, Baltimore, pp. 1–10
9.
Zurück zum Zitat Li P, Salour M, Su X (2008) A survey of Internet worm detection and containment. IEEE Commun Surv Tutor 10(1):20–35CrossRef Li P, Salour M, Su X (2008) A survey of Internet worm detection and containment. IEEE Commun Surv Tutor 10(1):20–35CrossRef
10.
Zurück zum Zitat Chen Z, Gao L, Kwiat K (2003) Modeling the spread of active worms. In Proceedings of the IEEE INFOCOM′03, pp. 1890–1900 Chen Z, Gao L, Kwiat K (2003) Modeling the spread of active worms. In Proceedings of the IEEE INFOCOM′03, pp. 1890–1900
11.
Zurück zum Zitat Zou CC, Towsley D, Gong W, Cai S (2005) Routing worm: a fast, selective attack worm based on IP address information. In Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS′5), Monterey, CA, pp. 199–206 Zou CC, Towsley D, Gong W, Cai S (2005) Routing worm: a fast, selective attack worm based on IP address information. In Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS′5), Monterey, CA, pp. 199–206
12.
Zurück zum Zitat Zou CC, Towsley D, Gong W (2003) On the performance of internet worm scanning strategies. University of Massachusetts, Technical Report Zou CC, Towsley D, Gong W (2003) On the performance of internet worm scanning strategies. University of Massachusetts, Technical Report
13.
Zurück zum Zitat Qing S, Wen W (2005) A survey and trends on Internet worms. Comput Secur 24(4):334–346CrossRef Qing S, Wen W (2005) A survey and trends on Internet worms. Comput Secur 24(4):334–346CrossRef
14.
Zurück zum Zitat Milojicic DS et al. (2003) Peer-to-peer computing. HP Laboratories Palo Alto HPL-2002-57 (R.1) Milojicic DS et al. (2003) Peer-to-peer computing. HP Laboratories Palo Alto HPL-2002-57 (R.1)
15.
Zurück zum Zitat Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. In Proceedings of the Royal College of Phisician, Edinburgh, pp. 700–721 Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. In Proceedings of the Royal College of Phisician, Edinburgh, pp. 700–721
16.
Zurück zum Zitat Andersson H, Britton T (2000) Stochastic epidemic models and their statistical analysis. Springer, New YorkCrossRefMATH Andersson H, Britton T (2000) Stochastic epidemic models and their statistical analysis. Springer, New YorkCrossRefMATH
17.
Zurück zum Zitat Li MY, Graef JR, Wang L, Karsai J (1999) Global dynamics of a SEIR model with varying total population size. Math Biosci 160(2):191–213MathSciNetCrossRefMATH Li MY, Graef JR, Wang L, Karsai J (1999) Global dynamics of a SEIR model with varying total population size. Math Biosci 160(2):191–213MathSciNetCrossRefMATH
18.
Zurück zum Zitat Sehgal VK (2006) Stochastic modeling of worm propagation in trusted networks. In Proceedings of the International Conference on Security and Management, Las Vegas, pp. 26–29 Sehgal VK (2006) Stochastic modeling of worm propagation in trusted networks. In Proceedings of the International Conference on Security and Management, Las Vegas, pp. 26–29
19.
Zurück zum Zitat Bailey NT (1975) The mathematical theory of infectious diseases and its applications. Hafner Press, New YorkMATH Bailey NT (1975) The mathematical theory of infectious diseases and its applications. Hafner Press, New YorkMATH
20.
Zurück zum Zitat Walter GG, Contreras M (1999) Compartmental modeling with networks. BIRKHAUSER, BostonCrossRefMATH Walter GG, Contreras M (1999) Compartmental modeling with networks. BIRKHAUSER, BostonCrossRefMATH
21.
Zurück zum Zitat Zhang X-S, Chen T, Zheng J, Li H (2010) Proactive worm propagation modeling and analysis in unstructured peer-to-peer networks. J Zhejiang Univ Sci C (Comput Electron) 11(2):119–129CrossRef Zhang X-S, Chen T, Zheng J, Li H (2010) Proactive worm propagation modeling and analysis in unstructured peer-to-peer networks. J Zhejiang Univ Sci C (Comput Electron) 11(2):119–129CrossRef
22.
Zurück zum Zitat Wang Y, Wen S, Cesare S, Zhou W, Xiang Y (2011) The microcosmic model of worm propagation. Comput J 54(10):1700–1720CrossRef Wang Y, Wen S, Cesare S, Zhou W, Xiang Y (2011) The microcosmic model of worm propagation. Comput J 54(10):1700–1720CrossRef
23.
Zurück zum Zitat Toutonji OA, Yoo S-M, Park M (2012) Stability analysis of VEISV propagation modeling for network worm attack. Appl Math Model 36(6):2751–2761MathSciNetCrossRefMATH Toutonji OA, Yoo S-M, Park M (2012) Stability analysis of VEISV propagation modeling for network worm attack. Appl Math Model 36(6):2751–2761MathSciNetCrossRefMATH
24.
Zurück zum Zitat Rohloff K, Basar T (2005) Stochastic behavior of random constant scanning worms. In Proceedings of the 14th International Conference onComputer Communications and Networks (ICCCN′05), San Diego, pp. 339–344 Rohloff K, Basar T (2005) Stochastic behavior of random constant scanning worms. In Proceedings of the 14th International Conference onComputer Communications and Networks (ICCCN′05), San Diego, pp. 339–344
25.
Zurück zum Zitat Sellke S, Shroff NB, Bagchi S (2005) Modeling and automated containment of worms. In Proceedings of the International Conference on Dependable Systems and Networks (DSN′05), Yokohama, pp. 528–537 Sellke S, Shroff NB, Bagchi S (2005) Modeling and automated containment of worms. In Proceedings of the International Conference on Dependable Systems and Networks (DSN′05), Yokohama, pp. 528–537
26.
Zurück zum Zitat Wang Y, Zhou W, Cesare C, Zhou W, Xiang Y (2011) Eliminating errors in worm propagation models. IEEE Commun Lett 15(9):1022–1024CrossRef Wang Y, Zhou W, Cesare C, Zhou W, Xiang Y (2011) Eliminating errors in worm propagation models. IEEE Commun Lett 15(9):1022–1024CrossRef
27.
Zurück zum Zitat Wen S et al (2013) Modeling propagation dynamics of social network worms. IEEE Trans Parallel Distrib Syst 24(8):1633–1643CrossRef Wen S et al (2013) Modeling propagation dynamics of social network worms. IEEE Trans Parallel Distrib Syst 24(8):1633–1643CrossRef
28.
Zurück zum Zitat Wen S, Zhou W, Wang Y, Zhou W, Xiang Y (2012) Locating defense positions for thwarting the propagation of topological worms. IEEE Commun Lett 4(560–563):16 Wen S, Zhou W, Wang Y, Zhou W, Xiang Y (2012) Locating defense positions for thwarting the propagation of topological worms. IEEE Commun Lett 4(560–563):16
29.
Zurück zum Zitat Zou CC, Gong W, Towsley D (2002) Code Red worm propagation modeling and analysis. In Proceedings of the 9th ACM Conference on Computer and Communications Security (CCS′02), Washington DC, pp. 138–147 Zou CC, Gong W, Towsley D (2002) Code Red worm propagation modeling and analysis. In Proceedings of the 9th ACM Conference on Computer and Communications Security (CCS′02), Washington DC, pp. 138–147
30.
Zurück zum Zitat Frauenthal JC (1980) Mathematical modeling in epidemology. Springer, New YorkCrossRef Frauenthal JC (1980) Mathematical modeling in epidemology. Springer, New YorkCrossRef
31.
Zurück zum Zitat Xie Y, Hu J, Tang S, Huang X (2013) A forwarded-backward algorithm for nested hidden semi-Markov model and application to network traffic. Comput J 56(2):229–238CrossRef Xie Y, Hu J, Tang S, Huang X (2013) A forwarded-backward algorithm for nested hidden semi-Markov model and application to network traffic. Comput J 56(2):229–238CrossRef
32.
Zurück zum Zitat Xie Y et al (2013) Modelling oscillation behaviour of network traffic by nested Hidden Markov Model with variable state-duration. IEEE Trans Parallel Distrib Syst 24(9):1807–1817CrossRef Xie Y et al (2013) Modelling oscillation behaviour of network traffic by nested Hidden Markov Model with variable state-duration. IEEE Trans Parallel Distrib Syst 24(9):1807–1817CrossRef
Metadaten
Titel
A stochastic epidemiological model for the propagation of active worms considering the dynamicity of network topology
verfasst von
Ahmad Jafarabadi
Mohammad Abdollahi Azgomi
Publikationsdatum
01.11.2015
Verlag
Springer US
Erschienen in
Peer-to-Peer Networking and Applications / Ausgabe 6/2015
Print ISSN: 1936-6442
Elektronische ISSN: 1936-6450
DOI
https://doi.org/10.1007/s12083-014-0306-y

Weitere Artikel der Ausgabe 6/2015

Peer-to-Peer Networking and Applications 6/2015 Zur Ausgabe