Skip to main content
Erschienen in: Memetic Computing 1/2019

31.10.2017 | Regular Research Paper

Compressed representation for higher-level meme space evolution: a case study on big knapsack problems

verfasst von: Liang Feng, Abhishek Gupta, Yew-Soon Ong

Erschienen in: Memetic Computing | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the last decades, a plethora of dedicated heuristic and meta-heuristic algorithms have been crafted to solve complex optimization problems. However, it is noted that the majority of these algorithms are restricted to instances of small to medium size only. In today’s world, with the rapid growth in communication and computation technologies, massive volumes of data are generated and stored daily, making it vital to explore learning and optimization techniques that can handle ‘big’ problems. In this paper, we take an important step in the aforementioned direction by proposing a novel, theoretically motivated compressed representation with high-level meme evolution for big optimization. In contrast to existing heuristics and meta-heuristics, which work directly on the solution space, the proposed meme evolution operates on a high-level meme space. In particular, taking knapsack problem as the case study, a meme, in the present case, represents a knowledge-block as an instruction for solving the knapsack problem. Since the size of the meme, as defined in this paper, is not strongly sensitive to the number of items in the underlying knapsack problem, the search in meme space provides a compressed form of optimization. In order to verify the effectiveness of the proposed approach we carry out a variety of numerical experiments with problem sizes ranging from the small (100 items) to the very large (10,000 items). The results provide strong encouragement for further exploration, in order to establish meme evolution as the gold standard in big optimization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
As the random features of items are fixed throughout the search, the task of finding the optimal KP solution becomes to search for the optimal meme which can provide the optimal clustering on the items giving the desired KP solution. The important properties of the items, i.e., profit and weight, are used to determine the fitness of a meme for guiding the search direction of meme evolution.
 
2
The time complexity of K-means is \(O(k*n)\), where k is the number of clusters and n is the number of date points to be clustered.
 
3
Without loss of generality, other elaborated decoding process can also be applied here, e.g., choose the cluster with more efficient items.
 
4
For each KP instance, the feature values are randomly generated before the running of meme evolution. These features are fixed for all the independent runs on this KP instance.
 
Literatur
1.
Zurück zum Zitat Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4(2):65–85CrossRef Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4(2):65–85CrossRef
2.
Zurück zum Zitat Kennedy J (2011) Particle swarm optimization. In: Encyclopedia of machine learning, pp 760–766 Kennedy J (2011) Particle swarm optimization. In: Encyclopedia of machine learning, pp 760–766
3.
Zurück zum Zitat Zhai Y, Ong Y-S, Tsang IW (2014) The emerging ‘big dimensionality’. IEEE Comput Intell Mag 9(3):154–160CrossRef Zhai Y, Ong Y-S, Tsang IW (2014) The emerging ‘big dimensionality’. IEEE Comput Intell Mag 9(3):154–160CrossRef
4.
Zurück zum Zitat Ferguson M (2012) Architecting a big data platform for analytics. A whitepaper prepared for IBM, Armonk, New York Ferguson M (2012) Architecting a big data platform for analytics. A whitepaper prepared for IBM, Armonk, New York
5.
Zurück zum Zitat Liu D, Tan KC, Goh CK, Ho WK (2007) A multiobjective memetic algorithm based on particle swarm optimization. IEEE Trans Syst Man Cybernet B 37(1):42–50CrossRef Liu D, Tan KC, Goh CK, Ho WK (2007) A multiobjective memetic algorithm based on particle swarm optimization. IEEE Trans Syst Man Cybernet B 37(1):42–50CrossRef
6.
Zurück zum Zitat Tang K, Mei Y, Yao X (2009) Memetic algorithm with extended neighborhood search for capacitated arc routing problems. IEEE Trans Evol Comput 13(5):1159–1166 Tang K, Mei Y, Yao X (2009) Memetic algorithm with extended neighborhood search for capacitated arc routing problems. IEEE Trans Evol Comput 13(5):1159–1166
7.
Zurück zum Zitat Neri F, Cotta C, Moscato P (2011) Handbook of memetic algorithms. In: Studies in computational intelligence. Springer Neri F, Cotta C, Moscato P (2011) Handbook of memetic algorithms. In: Studies in computational intelligence. Springer
8.
Zurück zum Zitat Chen XS, Ong YS, Lim MH, Tan KC (2011) A multi-facet survey on memetic computation. IEEE Trans Evol Comput 15:591–607CrossRef Chen XS, Ong YS, Lim MH, Tan KC (2011) A multi-facet survey on memetic computation. IEEE Trans Evol Comput 15:591–607CrossRef
9.
Zurück zum Zitat Situngkir H (2004) On selfish memes: culture as complex adaptive system. J Soc Complex 2(1):20–32 Situngkir H (2004) On selfish memes: culture as complex adaptive system. J Soc Complex 2(1):20–32
10.
Zurück zum Zitat Heylighen F, Chielens K (2009) Cultural evolution and memetics. In: Meyers B (ed) Encyclopedia of complexity and system science. Springer, Berlin Heylighen F, Chielens K (2009) Cultural evolution and memetics. In: Meyers B (ed) Encyclopedia of complexity and system science. Springer, Berlin
11.
Zurück zum Zitat Meuth R, Lim MH, Ong YS, Wunsch D (2009) A proposition on memes and meta-memes in computing for higher-order learning. Memet Comput 1:85–100CrossRef Meuth R, Lim MH, Ong YS, Wunsch D (2009) A proposition on memes and meta-memes in computing for higher-order learning. Memet Comput 1:85–100CrossRef
12.
Zurück zum Zitat Feng L, Ong Y.-S., Lim M.-H., Tsang Ivor WH (2015) Memetic search with inter-domain learning: a realization between cvrp and carp. IEEE Trans Evol Comput 19:644–658 Feng L, Ong Y.-S., Lim M.-H., Tsang Ivor WH (2015) Memetic search with inter-domain learning: a realization between cvrp and carp. IEEE Trans Evol Comput 19:644–658
13.
15.
Zurück zum Zitat Andonov R, Poirriez V, Rajopadhye SV (2000) Unbounded knapsack problem: dynamic programming revisited. Eur J Oper Res 123:394–407MathSciNetCrossRefMATH Andonov R, Poirriez V, Rajopadhye SV (2000) Unbounded knapsack problem: dynamic programming revisited. Eur J Oper Res 123:394–407MathSciNetCrossRefMATH
16.
Zurück zum Zitat Liu A, Wang J, Han G, Wang S, Wen J (2006) Improved simulated annealing algorithm solving for 0/1 knapsack problem. In: Proceedings of the sixth international conference on intelligent systems design and applications, vol 02, pp 1159–1164 Liu A, Wang J, Han G, Wang S, Wen J (2006) Improved simulated annealing algorithm solving for 0/1 knapsack problem. In: Proceedings of the sixth international conference on intelligent systems design and applications, vol 02, pp 1159–1164
17.
Zurück zum Zitat Zhao JF, Huang T, Pang F, Liu Y (2009) Genetic algorithm based on greedy strategy in the 0–1 knapsack problem. In: International conference on genetic and evolutionary computing, pp 105–107 Zhao JF, Huang T, Pang F, Liu Y (2009) Genetic algorithm based on greedy strategy in the 0–1 knapsack problem. In: International conference on genetic and evolutionary computing, pp 105–107
18.
Zurück zum Zitat Shi HX (2006) Solution to 0/1 knapsack problem based on improved ant colony algorithm. In: International conference on information acquisition, pp 1062–1066 Shi HX (2006) Solution to 0/1 knapsack problem based on improved ant colony algorithm. In: International conference on information acquisition, pp 1062–1066
19.
Zurück zum Zitat Li ZK, Li N (2009) A novel multi-mutation binary particle swarm optimization for 0/1 knapsack problem. In: Proceedings of the 21st annual international conference on Chinese control and decision conference, pp 3042–3047 Li ZK, Li N (2009) A novel multi-mutation binary particle swarm optimization for 0/1 knapsack problem. In: Proceedings of the 21st annual international conference on Chinese control and decision conference, pp 3042–3047
20.
Zurück zum Zitat Bansal JC, Deep K (2012) A modified binary particle swarm optimization for knapsack problems. Appl Math Comput 218(22):11042–11061MathSciNetMATH Bansal JC, Deep K (2012) A modified binary particle swarm optimization for knapsack problems. Appl Math Comput 218(22):11042–11061MathSciNetMATH
21.
Zurück zum Zitat Chen P, Li J, Liu Z (2008) Solving 0–1 knapsack problems by a discrete binary version of differential evolution. In: Second international symposium on intelligent information technology application vol 2, pp 513–516 Chen P, Li J, Liu Z (2008) Solving 0–1 knapsack problems by a discrete binary version of differential evolution. In: Second international symposium on intelligent information technology application vol 2, pp 513–516
22.
Zurück zum Zitat Han KH, Kim JH (2002) Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans Evol Comput 6:580–593MathSciNetCrossRef Han KH, Kim JH (2002) Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans Evol Comput 6:580–593MathSciNetCrossRef
23.
Zurück zum Zitat Moosavian N (2015) Soccer league competition algorithm for solving knapsack problems. Swarm Evol Comput 20:14–22CrossRef Moosavian N (2015) Soccer league competition algorithm for solving knapsack problems. Swarm Evol Comput 20:14–22CrossRef
24.
Zurück zum Zitat Kong X, Gao L, Ouyang H, Li S (2015) A simplified binary harmony search algorithm for large scale 0–1 knapsack problems. Exp Syst Appl 42(12):5337–5355CrossRef Kong X, Gao L, Ouyang H, Li S (2015) A simplified binary harmony search algorithm for large scale 0–1 knapsack problems. Exp Syst Appl 42(12):5337–5355CrossRef
25.
Zurück zum Zitat Zhang G, Rong H, Neri F, Pérez-Jiménez MJ (2014) An optimization spiking neural \(P\) system for approximately solving combinatorial optimization problems. Int J Neural Syst 24(05):1440006CrossRef Zhang G, Rong H, Neri F, Pérez-Jiménez MJ (2014) An optimization spiking neural \(P\) system for approximately solving combinatorial optimization problems. Int J Neural Syst 24(05):1440006CrossRef
26.
Zurück zum Zitat Michalewicz Z, Arabas J (1994) Genetic algorithms for the 0/1 knapsack problem. In: Ras ZW, Zemankova M (eds) Methodologies for intelligent systems, volume 869 of lecture notes in computer science. Springer, Berlin, pp 134–143 Michalewicz Z, Arabas J (1994) Genetic algorithms for the 0/1 knapsack problem. In: Ras ZW, Zemankova M (eds) Methodologies for intelligent systems, volume 869 of lecture notes in computer science. Springer, Berlin, pp 134–143
27.
Zurück zum Zitat Cover TM (1987) Linear separability. In: Open problems in communication and computation, pp 156–157 Cover TM (1987) Linear separability. In: Open problems in communication and computation, pp 156–157
28.
Zurück zum Zitat Wang Z, Zoghi M, Hutter F, Matheson D, De Freitas N (2013) Bayesian optimization in high dimensions via random embeddings. In: International Joint Conference on Artificial Intelligence (IJCAI), pp 1778–1784 Wang Z, Zoghi M, Hutter F, Matheson D, De Freitas N (2013) Bayesian optimization in high dimensions via random embeddings. In: International Joint Conference on Artificial Intelligence (IJCAI), pp 1778–1784
29.
Zurück zum Zitat Patvardhan C, Bansal S, Srivastav A (2015) Quantum-inspired evolutionary algorithm for difficult knapsack problems. Memet Comput 2(7):135–155CrossRefMATH Patvardhan C, Bansal S, Srivastav A (2015) Quantum-inspired evolutionary algorithm for difficult knapsack problems. Memet Comput 2(7):135–155CrossRefMATH
Metadaten
Titel
Compressed representation for higher-level meme space evolution: a case study on big knapsack problems
verfasst von
Liang Feng
Abhishek Gupta
Yew-Soon Ong
Publikationsdatum
31.10.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Memetic Computing / Ausgabe 1/2019
Print ISSN: 1865-9284
Elektronische ISSN: 1865-9292
DOI
https://doi.org/10.1007/s12293-017-0244-3

Weitere Artikel der Ausgabe 1/2019

Memetic Computing 1/2019 Zur Ausgabe

Editorial

Editorial

Premium Partner