Skip to main content
Erschienen in: Rare Metals 8/2022

18.09.2015

Modeling of microstructural evolution and flow behavior of superalloy IN718 using physically based internal state variables

verfasst von: Xue-Feng Tang, Bao-Yu Wang, Ning Zhang, Yuan-Ming Huo, Jing Zhou

Erschienen in: Rare Metals | Ausgabe 8/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microstructural evolution and flow behavior greatly affect the hot forming process of IN718. In this research, hot deformation behaviors of IN718 were investigated by performing hot compression tests at temperature range of 1000–1100 °C with strain rates of 0.1–20.0 s−1. By incorporating physically based internal state variables such as dislocation density, volume fraction of dynamic recrystallization, and grain size, a set of unified viscoplastic constitutive equations were developed to predict the microstructural evolution and flow behavior of IN718. The material constants were determined using a genetic algorithm (GA)-based optimization method. Comparisons of the computed and experimental results indicate that the constitutive equations established in this study can accurately describe the hot deformation behavior and microstructural evolution of IN718.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Roucoules C, Pietrzyk M, Hodgson PD. Analysis of work hardening and recrystallization during the hot working of steel using a statistically based internal variable model. Mater Sci Eng A. 2003;339(1):1.CrossRef Roucoules C, Pietrzyk M, Hodgson PD. Analysis of work hardening and recrystallization during the hot working of steel using a statistically based internal variable model. Mater Sci Eng A. 2003;339(1):1.CrossRef
[2]
Zurück zum Zitat Shimizu IA. Stochastic model of grain size distribution during dynamic recrystallization. Philos Mag A. 1999;79(5):1217.CrossRef Shimizu IA. Stochastic model of grain size distribution during dynamic recrystallization. Philos Mag A. 1999;79(5):1217.CrossRef
[3]
Zurück zum Zitat Sellars CM. Modelling microstructural development during hot rolling. Mater Sci Technol. 1990;6(11):1072.CrossRef Sellars CM. Modelling microstructural development during hot rolling. Mater Sci Technol. 1990;6(11):1072.CrossRef
[4]
Zurück zum Zitat Yin F, Hua L, Mao HJ, Han XH, Qian DS, Zhang R. Microstructural modeling and simulation for GCr15 steel during elevated temperature deformation. Mater Des. 2014;55(1):560.CrossRef Yin F, Hua L, Mao HJ, Han XH, Qian DS, Zhang R. Microstructural modeling and simulation for GCr15 steel during elevated temperature deformation. Mater Des. 2014;55(1):560.CrossRef
[5]
Zurück zum Zitat Lin YC, Chen MS, Zhong J. Numerical simulation for stress/strain distribution and microstructural evolution in 42CrMo steel during hot upsetting process. Comp Mater Sci. 2008;43(4):1117.CrossRef Lin YC, Chen MS, Zhong J. Numerical simulation for stress/strain distribution and microstructural evolution in 42CrMo steel during hot upsetting process. Comp Mater Sci. 2008;43(4):1117.CrossRef
[6]
Zurück zum Zitat Ding H, Hirai K, Homma T, Kamado S. Numerical simulation for microstructure evolution in AM50 Mg alloy during hot rolling. Comp Mater Sci. 2010;47(4):919.CrossRef Ding H, Hirai K, Homma T, Kamado S. Numerical simulation for microstructure evolution in AM50 Mg alloy during hot rolling. Comp Mater Sci. 2010;47(4):919.CrossRef
[7]
Zurück zum Zitat Jiang WG, Wang GC, Lu SQ, Li JW. Prediction of microstructure evolution of Al-1 % Mg alloy during hot forming and sequential heat treatment. J Mater Process Technol. 2007;182(1–3):274.CrossRef Jiang WG, Wang GC, Lu SQ, Li JW. Prediction of microstructure evolution of Al-1 % Mg alloy during hot forming and sequential heat treatment. J Mater Process Technol. 2007;182(1–3):274.CrossRef
[8]
Zurück zum Zitat Lin YC, Zhang J, Zhong J. Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel. Comp Mater Sci. 2008;43(4):752.CrossRef Lin YC, Zhang J, Zhong J. Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel. Comp Mater Sci. 2008;43(4):752.CrossRef
[9]
Zurück zum Zitat Salehi MS, Serajzadeh S. A model to predict recrystallization kinetics in hot strip rolling using combined artificial neural network and finite elements. J Mater Eng Perfom. 2009;18(9):1209.CrossRef Salehi MS, Serajzadeh S. A model to predict recrystallization kinetics in hot strip rolling using combined artificial neural network and finite elements. J Mater Eng Perfom. 2009;18(9):1209.CrossRef
[10]
Zurück zum Zitat Luo J, Li MQ. Modeling of grain size in isothermal compression of Ti-6Al-4V alloy using fuzzy neural network. Rare Met. 2011;30(6):555.CrossRef Luo J, Li MQ. Modeling of grain size in isothermal compression of Ti-6Al-4V alloy using fuzzy neural network. Rare Met. 2011;30(6):555.CrossRef
[11]
Zurück zum Zitat Ding R, Guo ZX. Microstructural modelling of dynamic recrystallisation using an extended cellular automaton approach. Comp Mater Sci. 2002;23(1):209.CrossRef Ding R, Guo ZX. Microstructural modelling of dynamic recrystallisation using an extended cellular automaton approach. Comp Mater Sci. 2002;23(1):209.CrossRef
[12]
Zurück zum Zitat Jin ZY, Liu J, Cui ZS, Wei DL. Identification of nucleation parameter for cellular automaton model of dynamic recrystallization. Trans Nonferr Met Soc China. 2010;20(3):458.CrossRef Jin ZY, Liu J, Cui ZS, Wei DL. Identification of nucleation parameter for cellular automaton model of dynamic recrystallization. Trans Nonferr Met Soc China. 2010;20(3):458.CrossRef
[13]
Zurück zum Zitat Zhang YQ, Jiang SY, Liang YL, Hu L. Simulation of dynamic recrystallization of NiTi shape memory alloy during hot compression deformation based on cellular automaton. Comp Mater Sci. 2013;71(1):124.CrossRef Zhang YQ, Jiang SY, Liang YL, Hu L. Simulation of dynamic recrystallization of NiTi shape memory alloy during hot compression deformation based on cellular automaton. Comp Mater Sci. 2013;71(1):124.CrossRef
[14]
Zurück zum Zitat Yazdipour N, Davies CHJ, Hodgson PD. Microstructural modeling of dynamic recrystallization using irregular cellular automata. Comp Mater Sci. 2008;44(2):566.CrossRef Yazdipour N, Davies CHJ, Hodgson PD. Microstructural modeling of dynamic recrystallization using irregular cellular automata. Comp Mater Sci. 2008;44(2):566.CrossRef
[15]
Zurück zum Zitat Svyetlichnyy DS. Modelling of the microstructure: from classical cellular automata approach to the frontal one. Comp Mater Sci. 2010;50(1):92.CrossRef Svyetlichnyy DS. Modelling of the microstructure: from classical cellular automata approach to the frontal one. Comp Mater Sci. 2010;50(1):92.CrossRef
[16]
Zurück zum Zitat Jamshidian M, Zi G, Rabczuk T. Phase field modeling of ideal grain growth in a distorted microstructure. Comp Mater Sci. 2014;95:663.CrossRef Jamshidian M, Zi G, Rabczuk T. Phase field modeling of ideal grain growth in a distorted microstructure. Comp Mater Sci. 2014;95:663.CrossRef
[17]
Zurück zum Zitat Jia BH, Song WD, Tang HP, Wang ZH, Mao XN, Ning JG. Hot deformation behavior and constitutive model of TC18 alloy during compression. Rare Met. 2014;33(4):3.CrossRef Jia BH, Song WD, Tang HP, Wang ZH, Mao XN, Ning JG. Hot deformation behavior and constitutive model of TC18 alloy during compression. Rare Met. 2014;33(4):3.CrossRef
[18]
Zurück zum Zitat Estrin Y. Dislocation theory based constitutive modelling: foundations and applications. J Mater Process Technol. 1998;80–81(1–3):33.CrossRef Estrin Y. Dislocation theory based constitutive modelling: foundations and applications. J Mater Process Technol. 1998;80–81(1–3):33.CrossRef
[19]
Zurück zum Zitat Lin J, Liu Y. A set of unified constitutive equations for modelling microstructure evolution in hot deformation. J Mater Process Technol. 2003;143–144(1–3):281.CrossRef Lin J, Liu Y. A set of unified constitutive equations for modelling microstructure evolution in hot deformation. J Mater Process Technol. 2003;143–144(1–3):281.CrossRef
[20]
Zurück zum Zitat Sun ZC, Yang H, Han GJ, Fan XG. A numerical model based on internal-state-variable method for the microstructure evolution during hot-working process of TA15 titanium alloy. Mater Sci Eng A. 2010;527(15):3464.CrossRef Sun ZC, Yang H, Han GJ, Fan XG. A numerical model based on internal-state-variable method for the microstructure evolution during hot-working process of TA15 titanium alloy. Mater Sci Eng A. 2010;527(15):3464.CrossRef
[21]
Zurück zum Zitat Garrett RP, Lin J, Dean TA. An investigation of the effects of solution heat treatment on mechanical properties for AA 6xxx alloys: experimentation and modelling. Int J Plast. 2005;21(8):1640.CrossRef Garrett RP, Lin J, Dean TA. An investigation of the effects of solution heat treatment on mechanical properties for AA 6xxx alloys: experimentation and modelling. Int J Plast. 2005;21(8):1640.CrossRef
[22]
Zurück zum Zitat Brown AA, Bammann DJ. Validation of a model for static and dynamic recrystallization in metals. Int J Plast. 2012;32–33(1):17.CrossRef Brown AA, Bammann DJ. Validation of a model for static and dynamic recrystallization in metals. Int J Plast. 2012;32–33(1):17.CrossRef
[23]
Zurück zum Zitat Momeni A, Ebrahimi GR, Jahazi M, Bocher P. Microstructure evolution at the onset of discontinuous dynamic recrystallization: a physics-based model of subgrain critical size. J Alloy Compd. 2014;587(1):199.CrossRef Momeni A, Ebrahimi GR, Jahazi M, Bocher P. Microstructure evolution at the onset of discontinuous dynamic recrystallization: a physics-based model of subgrain critical size. J Alloy Compd. 2014;587(1):199.CrossRef
[24]
Zurück zum Zitat Zhou J, Wang BY, Huang MD. Two constitutive descriptions of boron steel 22MnB5 at high temperature. Mater Des. 2014;63(1):738.CrossRef Zhou J, Wang BY, Huang MD. Two constitutive descriptions of boron steel 22MnB5 at high temperature. Mater Des. 2014;63(1):738.CrossRef
[25]
Zurück zum Zitat Grong Ø, Shercliff HR. Microstructural modelling in metals processing. Prog Mater Sci. 2002;47(2):163.CrossRef Grong Ø, Shercliff HR. Microstructural modelling in metals processing. Prog Mater Sci. 2002;47(2):163.CrossRef
[26]
Zurück zum Zitat Zhou N, Lv DC, Zhang HL, McAllister D, Zhang F, Mills MJ, Wang Y. Computer simulation of phase transformation and plastic deformation in IN718 superalloy: microstructural evolution during precipitation. Acta Mater. 2014;65(1):270.CrossRef Zhou N, Lv DC, Zhang HL, McAllister D, Zhang F, Mills MJ, Wang Y. Computer simulation of phase transformation and plastic deformation in IN718 superalloy: microstructural evolution during precipitation. Acta Mater. 2014;65(1):270.CrossRef
[27]
Zurück zum Zitat XuKD RenZM, Li CJ. Progress in application of rare metals in superalloys. Rare Met. 2014;33(2):111.CrossRef XuKD RenZM, Li CJ. Progress in application of rare metals in superalloys. Rare Met. 2014;33(2):111.CrossRef
[28]
Zurück zum Zitat Wang Y, Shao WZ, Zhen L, Zhang BY. Hot deformation behavior of delta-processed superalloy 718. Mater Sci Eng A. 2011;528(7–8):3218.CrossRef Wang Y, Shao WZ, Zhen L, Zhang BY. Hot deformation behavior of delta-processed superalloy 718. Mater Sci Eng A. 2011;528(7–8):3218.CrossRef
[29]
Zurück zum Zitat Na YS, Yeom JT, Park NK, Lee JY. Simulation of microstructures for alloy 718 blade forging using 3D FEM simulator. J Mater Process Technol. 2003;141(3):337.CrossRef Na YS, Yeom JT, Park NK, Lee JY. Simulation of microstructures for alloy 718 blade forging using 3D FEM simulator. J Mater Process Technol. 2003;141(3):337.CrossRef
[30]
Zurück zum Zitat Medeiros SC, Prasad YVRK, Frazier WG, Srinivasan R. Microstructural modeling of metadynamic recrystallization in hot working of IN 718 superalloy. Mater Sci Eng A. 2000;293(5):198.CrossRef Medeiros SC, Prasad YVRK, Frazier WG, Srinivasan R. Microstructural modeling of metadynamic recrystallization in hot working of IN 718 superalloy. Mater Sci Eng A. 2000;293(5):198.CrossRef
[31]
Zurück zum Zitat Zhang JM, Gao ZY, Zhong JY. Mathematical modeling of the hot-deformation behavior of superalloy IN718. Metall Mater Trans A. 1999;30(10):2701.CrossRef Zhang JM, Gao ZY, Zhong JY. Mathematical modeling of the hot-deformation behavior of superalloy IN718. Metall Mater Trans A. 1999;30(10):2701.CrossRef
[32]
Zurück zum Zitat Zhao X, Guest RP, Tin S, Cole D, Brooks JW, Peers M. Modelling hot deformation of Inconel 718 using state variables. Mater Sci Technol. 2004;20(11):1414.CrossRef Zhao X, Guest RP, Tin S, Cole D, Brooks JW, Peers M. Modelling hot deformation of Inconel 718 using state variables. Mater Sci Technol. 2004;20(11):1414.CrossRef
[33]
Zurück zum Zitat Ma Q, Lin Z, Yu Z. Prediction of deformation behavior and microstructure evolution in heavy forging by FEM. Int J Adv Manuf Technol. 2009;40(3–4):253.CrossRef Ma Q, Lin Z, Yu Z. Prediction of deformation behavior and microstructure evolution in heavy forging by FEM. Int J Adv Manuf Technol. 2009;40(3–4):253.CrossRef
[34]
Zurück zum Zitat Zhang N, Wang B, Lin J. Effect of cross wedge rolling on the microstructure of GH4169 alloy. Int J Miner Metall Mater. 2012;19(9):836.CrossRef Zhang N, Wang B, Lin J. Effect of cross wedge rolling on the microstructure of GH4169 alloy. Int J Miner Metall Mater. 2012;19(9):836.CrossRef
[35]
Zurück zum Zitat Lin YC, Chen XM, Wen DX, Chen MS. A physically-based constitutive model for a typical nickel-based superalloy. Comp Mater Sci. 2014;83(1):282.CrossRef Lin YC, Chen XM, Wen DX, Chen MS. A physically-based constitutive model for a typical nickel-based superalloy. Comp Mater Sci. 2014;83(1):282.CrossRef
[36]
Zurück zum Zitat Colás R. A model for the hot deformation of low-carbon steel. J Mater Process Technol. 1996;62(1):180.CrossRef Colás R. A model for the hot deformation of low-carbon steel. J Mater Process Technol. 1996;62(1):180.CrossRef
[37]
Zurück zum Zitat Dieter GE, Bacon D. Mechanical Metallurgy. New York: McGraw-Hill; 1986. 145. Dieter GE, Bacon D. Mechanical Metallurgy. New York: McGraw-Hill; 1986. 145.
[38]
Zurück zum Zitat Wanjara P, Jahazi M, Monajati H, Yue S, Immarigeon JP. Hot working behavior of near-α alloy IMI834. Mater Sci Eng A. 2005;396(1):50.CrossRef Wanjara P, Jahazi M, Monajati H, Yue S, Immarigeon JP. Hot working behavior of near-α alloy IMI834. Mater Sci Eng A. 2005;396(1):50.CrossRef
[39]
Zurück zum Zitat Lin J, Liu Y, Farrugia DCJ, Zhou M. Development of dislocation-based unified material model for simulation microstructure evolution in multipass hot rolling. Philos Mag. 2005;85(18):1967.CrossRef Lin J, Liu Y, Farrugia DCJ, Zhou M. Development of dislocation-based unified material model for simulation microstructure evolution in multipass hot rolling. Philos Mag. 2005;85(18):1967.CrossRef
[40]
Zurück zum Zitat Sandström R, Lagneborg R. A model for hot working occurring by recrystallization. Acta Metall. 1975;23(3):387.CrossRef Sandström R, Lagneborg R. A model for hot working occurring by recrystallization. Acta Metall. 1975;23(3):387.CrossRef
[41]
Zurück zum Zitat Zener C, Hollomon JH. Effect of strain rate upon plastic flow of steel. J Appl Phys. 1994;15(1):22.CrossRef Zener C, Hollomon JH. Effect of strain rate upon plastic flow of steel. J Appl Phys. 1994;15(1):22.CrossRef
[42]
Zurück zum Zitat Lin J, Yang J. GA-based multiple objective optimization for determining viscoplastic constitutive equations for superplastic alloys. Int J Plast. 1999;15(11):1181.CrossRef Lin J, Yang J. GA-based multiple objective optimization for determining viscoplastic constitutive equations for superplastic alloys. Int J Plast. 1999;15(11):1181.CrossRef
[43]
Zurück zum Zitat Cao J, Lin J. A study on formulation of objective functions for determining material models. Int J Mech Sci. 2008;50(2):93.CrossRef Cao J, Lin J. A study on formulation of objective functions for determining material models. Int J Mech Sci. 2008;50(2):93.CrossRef
[44]
Zurück zum Zitat Chen LQ, Sui FL, Liu XH. Grain growth model of Inconel 718 alloy forged slab in reheating process prior to tough rolling. Acta Metall Sin. 2009;45(10):1242. Chen LQ, Sui FL, Liu XH. Grain growth model of Inconel 718 alloy forged slab in reheating process prior to tough rolling. Acta Metall Sin. 2009;45(10):1242.
Metadaten
Titel
Modeling of microstructural evolution and flow behavior of superalloy IN718 using physically based internal state variables
verfasst von
Xue-Feng Tang
Bao-Yu Wang
Ning Zhang
Yuan-Ming Huo
Jing Zhou
Publikationsdatum
18.09.2015
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 8/2022
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-015-0602-6

Weitere Artikel der Ausgabe 8/2022

Rare Metals 8/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.