Skip to main content
Erschienen in: Rare Metals 8/2018

15.03.2018

Activating AlN thin film by introducing Co nanoparticles as a new anode material for thin-film lithium batteries

verfasst von: Zhong Yan, Xiao-Ye Niu, Xiao-Qin Du, Qin-Chao Wang, Xiao-Jing Wu, Yong-Ning Zhou

Erschienen in: Rare Metals | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

AlN/Co nanocomposite thin films were fabricated by pulsed laser deposition and investigated as new anode materials for lithium-ion batteries for the first time. The combination of electrochemically inactive AlN and Co in nanometer scale boosted the electrochemical performance of the thin films surprisingly. A high reversible capacity of 555 mAh·g−1 after 100 discharge–charge cycles at a current density of 500 mA·g−1 is obtained for the AlN/Co nanocomposite thin films, and 372 mAh·g−1 can be retained at a high rate up to 16C, exhibiting promising cycle stability and rate capability. The electrochemical reaction mechanism study reveals that Co nanoparticles could not only provide high electronic conductivity for the thin films, which facilitate the thorough decomposition of AlN in the initial discharge process, but also react with Li3N to form a new species Co2N during charge process, thus ensuring large capacity and high reversibility of AlN/Co nanocomposite thin films in subsequent cycles. This study provides a new perspective to design advanced electrode materials for lithium-ion batteries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Armand M, Tarascon JM. Building better batteries. Nature. 2008;451(7179):652.CrossRef Armand M, Tarascon JM. Building better batteries. Nature. 2008;451(7179):652.CrossRef
[2]
Zurück zum Zitat Liu CF, Neale ZG, Cao GZ. Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater Today. 2016;19(2):109.CrossRef Liu CF, Neale ZG, Cao GZ. Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater Today. 2016;19(2):109.CrossRef
[3]
Zurück zum Zitat Murphy DW, Christian PA. Solid state electrodes for high energy batteries. Science. 1979;205(4407):651.CrossRef Murphy DW, Christian PA. Solid state electrodes for high energy batteries. Science. 1979;205(4407):651.CrossRef
[4]
Zurück zum Zitat Hou YL, Wang RM, Zhang JT. Editorial for rare metals, special issue on nanomaterials and rechargeable battery applications. Rare Met. 2017;36(5):305.CrossRef Hou YL, Wang RM, Zhang JT. Editorial for rare metals, special issue on nanomaterials and rechargeable battery applications. Rare Met. 2017;36(5):305.CrossRef
[5]
Zurück zum Zitat Nitta N, Wu F, Lee JT, Yushin G. Li-ion battery materials: present and future. Mater Today. 2015;18(5):252.CrossRef Nitta N, Wu F, Lee JT, Yushin G. Li-ion battery materials: present and future. Mater Today. 2015;18(5):252.CrossRef
[6]
Zurück zum Zitat Balaji S, Ananda Kumar M, Manichandran T, Mutharasu D. Electrodeposited three dimensional tin nano wire anode for thin film Li-ion micro batteries. Russ J Electrochem. 2016;52(3):226.CrossRef Balaji S, Ananda Kumar M, Manichandran T, Mutharasu D. Electrodeposited three dimensional tin nano wire anode for thin film Li-ion micro batteries. Russ J Electrochem. 2016;52(3):226.CrossRef
[7]
Zurück zum Zitat Wu J, Lau WM, Geng DS. Recent progress in cobalt-based compounds as high-performance anode materials for lithium ion batteries. Rare Met. 2017;36(5):307.CrossRef Wu J, Lau WM, Geng DS. Recent progress in cobalt-based compounds as high-performance anode materials for lithium ion batteries. Rare Met. 2017;36(5):307.CrossRef
[8]
Zurück zum Zitat Salian GD, Lebouin C, Demoulin A, Lepihin MS, Maria S, Galeyeva AK, Kurbatov AP, Djenizian T. Electrodeposition of polymer electrolyte in nanostructured electrodes for enhanced electrochemical performance of thin-film Li-ion microbatteries. J Power Source. 2017;340:242.CrossRef Salian GD, Lebouin C, Demoulin A, Lepihin MS, Maria S, Galeyeva AK, Kurbatov AP, Djenizian T. Electrodeposition of polymer electrolyte in nanostructured electrodes for enhanced electrochemical performance of thin-film Li-ion microbatteries. J Power Source. 2017;340:242.CrossRef
[9]
Zurück zum Zitat Zargouni Y, Deheryan S, Radisic A, Alouani K, Vereecken MP. Electrolytic manganese dioxide coatings on high aspect ratio micro-pillar arrays for 3D thin film lithium ion batteries. Nanomaterials. 2017;7(6):126.CrossRef Zargouni Y, Deheryan S, Radisic A, Alouani K, Vereecken MP. Electrolytic manganese dioxide coatings on high aspect ratio micro-pillar arrays for 3D thin film lithium ion batteries. Nanomaterials. 2017;7(6):126.CrossRef
[10]
Zurück zum Zitat Quan Z, Hirayama M, Sato D, Zheng Y, Yano T, Hara K, Suzuki K, Hara M, Kanno R. Effect of excess Li2S on electrochemical properties of amorphous Li3PS4 films synthesized by pulsed laser deposition. J Am Ceram Soc. 2017;100(2):746.CrossRef Quan Z, Hirayama M, Sato D, Zheng Y, Yano T, Hara K, Suzuki K, Hara M, Kanno R. Effect of excess Li2S on electrochemical properties of amorphous Li3PS4 films synthesized by pulsed laser deposition. J Am Ceram Soc. 2017;100(2):746.CrossRef
[11]
Zurück zum Zitat Sun Q, Fu ZW. An anode material of CrN for lithium-ion batteries. Electrochem Solid State Lett. 2007;10(8):A189.CrossRef Sun Q, Fu ZW. An anode material of CrN for lithium-ion batteries. Electrochem Solid State Lett. 2007;10(8):A189.CrossRef
[12]
Zurück zum Zitat Zhou YN, Zhang H, Xue MZ, Wu CL, Wu XJ, Fu ZW. The electrochemistry of nanostructured In2O3 with lithium. J Power Source. 2006;162(2):1373.CrossRef Zhou YN, Zhang H, Xue MZ, Wu CL, Wu XJ, Fu ZW. The electrochemistry of nanostructured In2O3 with lithium. J Power Source. 2006;162(2):1373.CrossRef
[13]
Zurück zum Zitat Xie QS, Lin L, Ma YT, Yang JR, Huang J, Wang LS, Peng DL. Facile fabrication of ZnO–CuO porous hybrid microspheres as lithium ion battery anodes with enhanced cyclability. Rare Met. 2017;36(5):403.CrossRef Xie QS, Lin L, Ma YT, Yang JR, Huang J, Wang LS, Peng DL. Facile fabrication of ZnO–CuO porous hybrid microspheres as lithium ion battery anodes with enhanced cyclability. Rare Met. 2017;36(5):403.CrossRef
[14]
Zurück zum Zitat Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T. Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science. 1997;276(5317):1395.CrossRef Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T. Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science. 1997;276(5317):1395.CrossRef
[15]
Zurück zum Zitat Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature. 2000;407(6803):496.CrossRef Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature. 2000;407(6803):496.CrossRef
[16]
Zurück zum Zitat Zhou YN, Xue MZ, Fu ZW. Nanostructured thin film electrodes for lithium storage and all-solid-state thin-film lithium batteries. J Power Source. 2013;234:310.CrossRef Zhou YN, Xue MZ, Fu ZW. Nanostructured thin film electrodes for lithium storage and all-solid-state thin-film lithium batteries. J Power Source. 2013;234:310.CrossRef
[17]
Zurück zum Zitat Lapp T, Skaarup S, Hooper A. Ionic conductivity of pure and doped Li3N. Solid State Ionics. 1983;11(2):97.CrossRef Lapp T, Skaarup S, Hooper A. Ionic conductivity of pure and doped Li3N. Solid State Ionics. 1983;11(2):97.CrossRef
[18]
Zurück zum Zitat Huang H, Gao S, Wu AM, Cheng K, Li XN, Gao XX, Zhao JJ, Dong XL, Cao GZ. Fe3N constrained inside C nanocages as an anode for Li-ion batteries through post-synthesis nitridation. Nano Energy. 2017;31:74.CrossRef Huang H, Gao S, Wu AM, Cheng K, Li XN, Gao XX, Zhao JJ, Dong XL, Cao GZ. Fe3N constrained inside C nanocages as an anode for Li-ion batteries through post-synthesis nitridation. Nano Energy. 2017;31:74.CrossRef
[19]
Zurück zum Zitat Balogun M, Zeng Y, Qiu W, Luo Y, Onasanya A, Olaniyi TK, Tong Y. Three-dimensional nickel nitride (Ni3N) nanosheets: free standing and flexible electrodes for lithium ion batteries and supercapacitors. J Mater Chem A. 2016;4(25):9844.CrossRef Balogun M, Zeng Y, Qiu W, Luo Y, Onasanya A, Olaniyi TK, Tong Y. Three-dimensional nickel nitride (Ni3N) nanosheets: free standing and flexible electrodes for lithium ion batteries and supercapacitors. J Mater Chem A. 2016;4(25):9844.CrossRef
[20]
Zurück zum Zitat Caicedo JC, Zambrano G, Aperador W, Escobar-Alarcon L, Camps E. Mechanical and electrochemical characterization of vanadium nitride (VN) thin films. Appl Surf Sci. 2011;258(1):312.CrossRef Caicedo JC, Zambrano G, Aperador W, Escobar-Alarcon L, Camps E. Mechanical and electrochemical characterization of vanadium nitride (VN) thin films. Appl Surf Sci. 2011;258(1):312.CrossRef
[21]
Zurück zum Zitat Guzman RC, Yang J, Ming-Cheng Cheng M, Salley SO, Ng KYS. High capacity silicon nitride-based composite anodes for lithium ion batteries. J Mater Chem A. 2014;2(35):14577.CrossRef Guzman RC, Yang J, Ming-Cheng Cheng M, Salley SO, Ng KYS. High capacity silicon nitride-based composite anodes for lithium ion batteries. J Mater Chem A. 2014;2(35):14577.CrossRef
[22]
Zurück zum Zitat Dong S, Chen X, Gu L, Zhou XH, Xu HX, Wang HB, Liu ZH, Han PX, Yao JH, Wang L, Cui GL, Chen LQ. Facile preparation of mesoporous titanium nitride microspheres for electrochemical energy storage. ACS Appl Mater Inter. 2011;3(1):93.CrossRef Dong S, Chen X, Gu L, Zhou XH, Xu HX, Wang HB, Liu ZH, Han PX, Yao JH, Wang L, Cui GL, Chen LQ. Facile preparation of mesoporous titanium nitride microspheres for electrochemical energy storage. ACS Appl Mater Inter. 2011;3(1):93.CrossRef
[23]
Zurück zum Zitat Fu ZW, Wang Y, Yue XL, Zhao SL, Qin QZ. Electrochemical reactions of lithium with transition metal nitride electrodes. J Phys Chem B. 2004;108(7):2236.CrossRef Fu ZW, Wang Y, Yue XL, Zhao SL, Qin QZ. Electrochemical reactions of lithium with transition metal nitride electrodes. J Phys Chem B. 2004;108(7):2236.CrossRef
[24]
Zurück zum Zitat Nandi DK, Sen UK, Sinha S, Dhara A, Mitra S, Sarkar SK. Atomic layer deposited tungsten nitride thin films as a new lithium-ion battery anode. Phys Chem Chem Phys. 2015;17(26):17445.CrossRef Nandi DK, Sen UK, Sinha S, Dhara A, Mitra S, Sarkar SK. Atomic layer deposited tungsten nitride thin films as a new lithium-ion battery anode. Phys Chem Chem Phys. 2015;17(26):17445.CrossRef
[25]
Zurück zum Zitat Pereira N, Dupont L, Tarascon JM, Klein LC, Amatucci GG. Electrochemistry of Cu3N with lithium: a complex system with parallel processes. J Electrochem Soc. 2003;150(9):A1273.CrossRef Pereira N, Dupont L, Tarascon JM, Klein LC, Amatucci GG. Electrochemistry of Cu3N with lithium: a complex system with parallel processes. J Electrochem Soc. 2003;150(9):A1273.CrossRef
[26]
Zurück zum Zitat Pereira N, Klein LC, Amatucci GG. The electrochemistry of Zn3N2 and LiZnN: a lithium reaction mechanism for metal nitride electrodes. J Electrochem Soc. 2002;149(3):A262.CrossRef Pereira N, Klein LC, Amatucci GG. The electrochemistry of Zn3N2 and LiZnN: a lithium reaction mechanism for metal nitride electrodes. J Electrochem Soc. 2002;149(3):A262.CrossRef
[27]
Zurück zum Zitat Zhou YN, Liu C, Chen HJ, Zhang L, Li WJ, Fu ZW. Electrochemistry of V2ON with lithium. Electrochim Acta. 2011;56(16):5532.CrossRef Zhou YN, Liu C, Chen HJ, Zhang L, Li WJ, Fu ZW. Electrochemistry of V2ON with lithium. Electrochim Acta. 2011;56(16):5532.CrossRef
[28]
Zurück zum Zitat Anaraki-Ardakani H. A computational study on the application of AlN nanotubes in Li-ion batteries. Phys Lett A. 2017;381(11):1041.CrossRef Anaraki-Ardakani H. A computational study on the application of AlN nanotubes in Li-ion batteries. Phys Lett A. 2017;381(11):1041.CrossRef
[29]
Zurück zum Zitat Kusunose T, Sekino T. Improvement in fracture strength in electrically conductive AlN ceramics with high thermal conductivity. Ceram Int. 2016;42(11):13183.CrossRef Kusunose T, Sekino T. Improvement in fracture strength in electrically conductive AlN ceramics with high thermal conductivity. Ceram Int. 2016;42(11):13183.CrossRef
[30]
Zurück zum Zitat Pan Y, Wu XJ, Zhang ZQ, Fu ZW, Zhou YN. Binder and carbon-free SbSn-P nanocomposite thin films as anode materials for sodium-ion batteries. J Alloys Compd. 2017;714(Supplement C):348.CrossRef Pan Y, Wu XJ, Zhang ZQ, Fu ZW, Zhou YN. Binder and carbon-free SbSn-P nanocomposite thin films as anode materials for sodium-ion batteries. J Alloys Compd. 2017;714(Supplement C):348.CrossRef
[31]
Zurück zum Zitat Zhou YN, Zhang H, Wu XJ, Fu ZW. Li3N–Co nanocomposite: a new promising lithium-ion storage material. Electrochem Solid State Lett. 2008;11(4):A51.CrossRef Zhou YN, Zhang H, Wu XJ, Fu ZW. Li3N–Co nanocomposite: a new promising lithium-ion storage material. Electrochem Solid State Lett. 2008;11(4):A51.CrossRef
[32]
Zurück zum Zitat Zhou YN, Wang XJ, Lee HS, Nam KW, Yang XQ, Haas O. Electrochemical investigation of Li–Al anodes in oligo(ethylene glycol) dimethyl ether/LiPF6. J Appl Electrochem. 2011;41(3):271.CrossRef Zhou YN, Wang XJ, Lee HS, Nam KW, Yang XQ, Haas O. Electrochemical investigation of Li–Al anodes in oligo(ethylene glycol) dimethyl ether/LiPF6. J Appl Electrochem. 2011;41(3):271.CrossRef
[33]
Zurück zum Zitat Zhou YN, Liu WY, Xue MZ, Yu L, Wu CL, Wu XJ, Fu ZW. LiF/Co nanocomposite as a new Li storage material. Electrochem Solid State Lett. 2006;9(3):A147.CrossRef Zhou YN, Liu WY, Xue MZ, Yu L, Wu CL, Wu XJ, Fu ZW. LiF/Co nanocomposite as a new Li storage material. Electrochem Solid State Lett. 2006;9(3):A147.CrossRef
[34]
Zurück zum Zitat Zhou YN, Sina M, Pereira N, Yu X, Amatucci GG, Yang XQ, Cosandey F, Nam KW. FeO0.7F1.3/C nanocomposite as a high-capacity cathode material for sodium-ion batteries. Adv Funct Mater. 2015;25(5):696.CrossRef Zhou YN, Sina M, Pereira N, Yu X, Amatucci GG, Yang XQ, Cosandey F, Nam KW. FeO0.7F1.3/C nanocomposite as a high-capacity cathode material for sodium-ion batteries. Adv Funct Mater. 2015;25(5):696.CrossRef
Metadaten
Titel
Activating AlN thin film by introducing Co nanoparticles as a new anode material for thin-film lithium batteries
verfasst von
Zhong Yan
Xiao-Ye Niu
Xiao-Qin Du
Qin-Chao Wang
Xiao-Jing Wu
Yong-Ning Zhou
Publikationsdatum
15.03.2018
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 8/2018
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-018-1013-2

Weitere Artikel der Ausgabe 8/2018

Rare Metals 8/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.