Skip to main content
Erschienen in: Environmental Earth Sciences 5/2017

01.03.2017 | Original Article

Seismic liquefaction potential assessed by neural networks

verfasst von: Xinhua Xue, Enlong Liu

Erschienen in: Environmental Earth Sciences | Ausgabe 5/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study presents two optimization techniques: genetic algorithm (GA) and particle swarm optimization (PSO), to improve the efficiency of backpropagation (BP) neural network model for predicting liquefaction susceptibility of soil. A detailed parametric study is designed and performed to find the optimal parameters of GA and PSO, respectively. The database used in this study includes 166 CPT-based field observations from more than eight major earthquakes between 1964 and 1983. Six factors including cone resistance, total vertical stress, effective vertical stress, depth of penetration, normalized peak horizontal acceleration at ground surface and earthquake magnitude are selected as the evaluating indices. The predictions from the PSO–BP model were compared with those from two models: BP and GA–BP. The study concluded that the proposed PSO–BP model improves the classification accuracy and is a feasible method in predicting soil liquefaction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alemdag S, Gurocak Z, Cevik A, Cabalar AF, Gokceoglu C (2016) Modeling deformation modulus of a stratified sedimentary rock mass using neural network, fuzzy inference and genetic programming. Eng Geol 203:70–82CrossRef Alemdag S, Gurocak Z, Cevik A, Cabalar AF, Gokceoglu C (2016) Modeling deformation modulus of a stratified sedimentary rock mass using neural network, fuzzy inference and genetic programming. Eng Geol 203:70–82CrossRef
Zurück zum Zitat Banerjee TP, Das S (2012) Multi-sensor data fusion using support vector machine for motor fault detection. Inf Sci 217:96–107CrossRef Banerjee TP, Das S (2012) Multi-sensor data fusion using support vector machine for motor fault detection. Inf Sci 217:96–107CrossRef
Zurück zum Zitat Belkhatir M, Schanz T, Arab A, Della N, Kadri A (2014) Insight into the effects of gradation on the pore pressure generation of sand–silt mixtures. Geotech Test J 37(5):922–931CrossRef Belkhatir M, Schanz T, Arab A, Della N, Kadri A (2014) Insight into the effects of gradation on the pore pressure generation of sand–silt mixtures. Geotech Test J 37(5):922–931CrossRef
Zurück zum Zitat Cabalar AF, Cevik A (2009) Genetic programming-based attenuation relationship: an application of recent earthquakes in turkey. Comput Geosci 35(9):1884–1896CrossRef Cabalar AF, Cevik A (2009) Genetic programming-based attenuation relationship: an application of recent earthquakes in turkey. Comput Geosci 35(9):1884–1896CrossRef
Zurück zum Zitat Cabalar AF, Cevik A (2011) Triaxial behavior of sand–mica mixtures using genetic programming. Expert Syst Appl 38(8):10358–10367CrossRef Cabalar AF, Cevik A (2011) Triaxial behavior of sand–mica mixtures using genetic programming. Expert Syst Appl 38(8):10358–10367CrossRef
Zurück zum Zitat Cabalar AF, Cevik A, Guzelbey IH (2010) Constitutive modeling of Leighton Buzzard sands using genetic programming. Neural Comput Appl 19(5):657–665CrossRef Cabalar AF, Cevik A, Guzelbey IH (2010) Constitutive modeling of Leighton Buzzard sands using genetic programming. Neural Comput Appl 19(5):657–665CrossRef
Zurück zum Zitat Cevik A, Cabalar AF (2009) Modelling damping ratio and shear modulus of sand-mica mixtures using genetic programming. Expert Syst Appl 36(4):7749–7757CrossRef Cevik A, Cabalar AF (2009) Modelling damping ratio and shear modulus of sand-mica mixtures using genetic programming. Expert Syst Appl 36(4):7749–7757CrossRef
Zurück zum Zitat Chern SG, Lee CY (2009) CPT-based simplified liquefaction assessment by using fuzzy-neural network. J Mar Sci Technol 17(4):326–331 Chern SG, Lee CY (2009) CPT-based simplified liquefaction assessment by using fuzzy-neural network. J Mar Sci Technol 17(4):326–331
Zurück zum Zitat Chern SG, Lee CY, Wang CC (2008) CPT-based liquefaction assessment by using fuzzy-neural network. J Mar Sci Technol 16(2):139–148 Chern SG, Lee CY, Wang CC (2008) CPT-based liquefaction assessment by using fuzzy-neural network. J Mar Sci Technol 16(2):139–148
Zurück zum Zitat Ding SF, Su CY, Yu JZ (2011) An optimizing BP neural network algorithm based on genetic algorithm. Artif Intell Rev 36(2):153–162CrossRef Ding SF, Su CY, Yu JZ (2011) An optimizing BP neural network algorithm based on genetic algorithm. Artif Intell Rev 36(2):153–162CrossRef
Zurück zum Zitat Erzin Y, Ecemis N (2015) The use of neural networks for CPT-based liquefaction screening. Bull Eng Geol Environ 74(1):103–116CrossRef Erzin Y, Ecemis N (2015) The use of neural networks for CPT-based liquefaction screening. Bull Eng Geol Environ 74(1):103–116CrossRef
Zurück zum Zitat Farrokhzad F, Choobbasti AJ, Barari A (2012) Liquefaction microzonation of Babol city using artificial neural network. J King Saud Univ Sci 24(1):89–100CrossRef Farrokhzad F, Choobbasti AJ, Barari A (2012) Liquefaction microzonation of Babol city using artificial neural network. J King Saud Univ Sci 24(1):89–100CrossRef
Zurück zum Zitat Ghosh S, Das S, Kundu D, Suresh K, Panigrahi BK, Cui ZH (2012) An inertia-adaptive particle swarm system with particle mobility factor for improved global optimization. Neural Comput Appl 21(2):237–250CrossRef Ghosh S, Das S, Kundu D, Suresh K, Panigrahi BK, Cui ZH (2012) An inertia-adaptive particle swarm system with particle mobility factor for improved global optimization. Neural Comput Appl 21(2):237–250CrossRef
Zurück zum Zitat Goh ATC (1994) Seismic liquefaction potential assessed by neural networks. J Geotech Eng 120(9):1467–1480CrossRef Goh ATC (1994) Seismic liquefaction potential assessed by neural networks. J Geotech Eng 120(9):1467–1480CrossRef
Zurück zum Zitat Goh ATC (1996) Neural network modeling of CPT seismic liquefaction data. J Geotech Eng 122(1):70–73CrossRef Goh ATC (1996) Neural network modeling of CPT seismic liquefaction data. J Geotech Eng 122(1):70–73CrossRef
Zurück zum Zitat Goh ATC (2002) Probabilistic neural network for evaluating seismic liquefaction potential. Can Geotech J 39:219–232CrossRef Goh ATC (2002) Probabilistic neural network for evaluating seismic liquefaction potential. Can Geotech J 39:219–232CrossRef
Zurück zum Zitat Guettaya I, El Ouni MR (2014) In situ-based assessment of soil liquefaction potential-case study of an earth dam in Tunisia. Front Struct Civ Eng 8(4):456–461CrossRef Guettaya I, El Ouni MR (2014) In situ-based assessment of soil liquefaction potential-case study of an earth dam in Tunisia. Front Struct Civ Eng 8(4):456–461CrossRef
Zurück zum Zitat Jha SK, Suzuki K (2009) Reliability analysis of soil liquefaction based on standard penetration test. Comput Geotech 36(4):589–596CrossRef Jha SK, Suzuki K (2009) Reliability analysis of soil liquefaction based on standard penetration test. Comput Geotech 36(4):589–596CrossRef
Zurück zum Zitat Juang CH, Chen CJ, Jiang T, Andrus RD (2000) Risk-based liquefaction potential evaluation using standard penetration tests. Can Geotech J 37(6):1195–1208CrossRef Juang CH, Chen CJ, Jiang T, Andrus RD (2000) Risk-based liquefaction potential evaluation using standard penetration tests. Can Geotech J 37(6):1195–1208CrossRef
Zurück zum Zitat Juang CH, Yuan HM, Lee DH, Lin PS (2003) Simplified cone penetration test-based method for evaluating liquefaction resistance of soils. J Geotech Geoenviron Eng 129(1):66–80CrossRef Juang CH, Yuan HM, Lee DH, Lin PS (2003) Simplified cone penetration test-based method for evaluating liquefaction resistance of soils. J Geotech Geoenviron Eng 129(1):66–80CrossRef
Zurück zum Zitat Karegowda AG, Manjunath AS, Jayaram MA (2011) Application of genetic algorithm optimized neural network connection weights for medical diagnosis of Pima Indians diabetes. Int J Soft Comput 2(2):15–22CrossRef Karegowda AG, Manjunath AS, Jayaram MA (2011) Application of genetic algorithm optimized neural network connection weights for medical diagnosis of Pima Indians diabetes. Int J Soft Comput 2(2):15–22CrossRef
Zurück zum Zitat Karthikeyan J, Kim D, Aiyer BG, Samui P (2013) SPT-based liquefaction potential assessment by relevance vector machine approach. Eur J Environ Civ Eng 17(4):248–262CrossRef Karthikeyan J, Kim D, Aiyer BG, Samui P (2013) SPT-based liquefaction potential assessment by relevance vector machine approach. Eur J Environ Civ Eng 17(4):248–262CrossRef
Zurück zum Zitat Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the 1995 IEEE international conference on neural networks, vol 4, Perth, Australia. IEEE Service Center, Piscataway, pp 1942–1948 Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the 1995 IEEE international conference on neural networks, vol 4, Perth, Australia. IEEE Service Center, Piscataway, pp 1942–1948
Zurück zum Zitat Kumar S, Naresh R (2007) Efficient real coded genetic algorithm to solve the non-convex hydrothermal scheduling problem. Int J Electr Power Energy Syst 29(10):738–747CrossRef Kumar S, Naresh R (2007) Efficient real coded genetic algorithm to solve the non-convex hydrothermal scheduling problem. Int J Electr Power Energy Syst 29(10):738–747CrossRef
Zurück zum Zitat Kurup PU, Dudani NK (2002) Neural networks for profiling stress history of clays from PCPT data. J Geotech Geoenviron 128(4):569–579CrossRef Kurup PU, Dudani NK (2002) Neural networks for profiling stress history of clays from PCPT data. J Geotech Geoenviron 128(4):569–579CrossRef
Zurück zum Zitat Lee CY, Chern SG (2013) Application of a support vector machine for liquefaction assessment. J Mar Sci Technol 21(3):318–324 Lee CY, Chern SG (2013) Application of a support vector machine for liquefaction assessment. J Mar Sci Technol 21(3):318–324
Zurück zum Zitat Marcuson WF III (1978) Definition of terms related to liquefaction. J Geotech Eng Div ASCE 104(9):1197–1200 Marcuson WF III (1978) Definition of terms related to liquefaction. J Geotech Eng Div ASCE 104(9):1197–1200
Zurück zum Zitat Mughieda O, Bani HK, Safieh B (2009) Liquefaction assessment by artificial neural networks based on CPT. Int J Geotech Eng 2:289–302CrossRef Mughieda O, Bani HK, Safieh B (2009) Liquefaction assessment by artificial neural networks based on CPT. Int J Geotech Eng 2:289–302CrossRef
Zurück zum Zitat Nasir M, Das S, Maity D, Sengupta S, Halder U, Suganthan PN (2012) A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization. Inf Sci 209:16–36CrossRef Nasir M, Das S, Maity D, Sengupta S, Halder U, Suganthan PN (2012) A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization. Inf Sci 209:16–36CrossRef
Zurück zum Zitat Padmini D, Ilamparuthi K, Sudheer KP (2008) Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models. Comput Geotech 35:33–46CrossRef Padmini D, Ilamparuthi K, Sudheer KP (2008) Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models. Comput Geotech 35:33–46CrossRef
Zurück zum Zitat Pal M (2006) Support vector machines-based modeling of seismic liquefaction potential. Int J Numer Anal Methods 30(10):983–996CrossRef Pal M (2006) Support vector machines-based modeling of seismic liquefaction potential. Int J Numer Anal Methods 30(10):983–996CrossRef
Zurück zum Zitat Pour MN, Asakereh A (2015) A comparison between two field methods of evaluation of liquefaction potential in the Bandar Abbas city. Am J Civ Eng 3(2–2):1–5 Pour MN, Asakereh A (2015) A comparison between two field methods of evaluation of liquefaction potential in the Bandar Abbas city. Am J Civ Eng 3(2–2):1–5
Zurück zum Zitat Ramakrishnan D, Singh TN, Purwar N, Badre KS, Gulati A, Gupta S (2008) Artificial neural network and liquefaction susceptibility assessment: a case study using the 2001 Bhuj earthquake data, Gujarat, India. Comput Geosci 12:491–501CrossRef Ramakrishnan D, Singh TN, Purwar N, Badre KS, Gulati A, Gupta S (2008) Artificial neural network and liquefaction susceptibility assessment: a case study using the 2001 Bhuj earthquake data, Gujarat, India. Comput Geosci 12:491–501CrossRef
Zurück zum Zitat Ren Z, San Z (2007) Improvement of real-valued genetic algorithm and performance study. Acta Electron Sin 35(2):269–274 Ren Z, San Z (2007) Improvement of real-valued genetic algorithm and performance study. Acta Electron Sin 35(2):269–274
Zurück zum Zitat Ren C, An N, Wang JZ, Li L, Hu B, Shang D (2014) Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting. Knowl Based Syst 56:226–239CrossRef Ren C, An N, Wang JZ, Li L, Hu B, Shang D (2014) Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting. Knowl Based Syst 56:226–239CrossRef
Zurück zum Zitat Sakthivel VP, Bhuvaneswari R, Subramanian S (2010) An improved particle swarm optimization for induction motor parameter determination. Int J Comput Appl 1(2):62–67 Sakthivel VP, Bhuvaneswari R, Subramanian S (2010) An improved particle swarm optimization for induction motor parameter determination. Int J Comput Appl 1(2):62–67
Zurück zum Zitat Samui P (2007) Seismic liquefaction potential assessment by using relevance vector machine. Earthq Eng Eng Vib 6(4):331–336CrossRef Samui P (2007) Seismic liquefaction potential assessment by using relevance vector machine. Earthq Eng Eng Vib 6(4):331–336CrossRef
Zurück zum Zitat Samui P (2013) Liquefaction prediction using support vector machine model based on cone penetration data. Front Struct Civ Eng 7(1):72–82CrossRef Samui P (2013) Liquefaction prediction using support vector machine model based on cone penetration data. Front Struct Civ Eng 7(1):72–82CrossRef
Zurück zum Zitat Samui P, Sitharam TG (2011) Machine learning modelling for predicting soil liquefaction susceptibility. Nat Hazards Earth Syst Sci 11:1–9CrossRef Samui P, Sitharam TG (2011) Machine learning modelling for predicting soil liquefaction susceptibility. Nat Hazards Earth Syst Sci 11:1–9CrossRef
Zurück zum Zitat Tang Y, Zang YQ, Huang G, Hu X (2005) Granular SVM-RFE gene selection algorithm for reliable prostate cancer classification on microarray expression data. In: Proceedings of the 5th IEEE symposium on bioinformatics and bioengineering (BIBE’05) Tang Y, Zang YQ, Huang G, Hu X (2005) Granular SVM-RFE gene selection algorithm for reliable prostate cancer classification on microarray expression data. In: Proceedings of the 5th IEEE symposium on bioinformatics and bioengineering (BIBE’05)
Zurück zum Zitat Whitley D, Starkweather T, Bogart C (1990) Genetic algorithms and neural networks: optimizing connection and connectivity. Parallel Comput 14(3):347–361CrossRef Whitley D, Starkweather T, Bogart C (1990) Genetic algorithms and neural networks: optimizing connection and connectivity. Parallel Comput 14(3):347–361CrossRef
Zurück zum Zitat Xue XH, Yang XG (2014) Seismic liquefaction potential assessed by fuzzy comprehensive evaluation method. Nat Hazards 71:2101–2112CrossRef Xue XH, Yang XG (2014) Seismic liquefaction potential assessed by fuzzy comprehensive evaluation method. Nat Hazards 71:2101–2112CrossRef
Zurück zum Zitat Yamagami Y, Jiang JC (1997) A search for the critical slip surface in three-dimensional slope stability analysis. Soils Found 37(3):1–16CrossRef Yamagami Y, Jiang JC (1997) A search for the critical slip surface in three-dimensional slope stability analysis. Soils Found 37(3):1–16CrossRef
Zurück zum Zitat Young-Su K, Byung-Tak K (2006) Use of artificial neural networks in the prediction of liquefaction resistance of sands. J Geotech Geoenviron Eng 132(11):1502–1504CrossRef Young-Su K, Byung-Tak K (2006) Use of artificial neural networks in the prediction of liquefaction resistance of sands. J Geotech Geoenviron Eng 132(11):1502–1504CrossRef
Zurück zum Zitat Zhang G, Robertson PK, Brachman RWI (2004) Estimating liquefaction-induced lateral displacements using the standard penetration test or cone penetration test. J Geotech Geoenviron Eng 130(8):861–871CrossRef Zhang G, Robertson PK, Brachman RWI (2004) Estimating liquefaction-induced lateral displacements using the standard penetration test or cone penetration test. J Geotech Geoenviron Eng 130(8):861–871CrossRef
Zurück zum Zitat Zhao WG (2012) BP neural network based on PSO algorithm for temperature characteristics of gas nanosensor. J Comput 7(9):2318–2323 Zhao WG (2012) BP neural network based on PSO algorithm for temperature characteristics of gas nanosensor. J Comput 7(9):2318–2323
Metadaten
Titel
Seismic liquefaction potential assessed by neural networks
verfasst von
Xinhua Xue
Enlong Liu
Publikationsdatum
01.03.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Environmental Earth Sciences / Ausgabe 5/2017
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-017-6523-y

Weitere Artikel der Ausgabe 5/2017

Environmental Earth Sciences 5/2017 Zur Ausgabe