Skip to main content
Erschienen in: Environmental Earth Sciences 4/2018

01.02.2018 | Thematic Issue

CO2 mineralization of natural wollastonite into porous silica and CaCO3 powders promoted via membrane electrolysis

verfasst von: Heping Xie, Fuhuan Wang, Yufei Wang, Tao Liu, Yifan Wu, Bin Liang

Erschienen in: Environmental Earth Sciences | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

CO2 is a greenhouse gas, whose emissions threaten the existence of human beings. Its inherently safe sequestration can be performed via CO2 mineralization, which is relatively slow under natural conditions. In this work, an energy-saving membrane electrolysis technique was proposed for accelerating the CO2 mineralization of wollastonite into SiO2 and CaCO3 products. The electrolysis process involved splitting NH4Cl into HCl and NH3·H2O via hydrogen oxidation and water reduction at the anode and cathode of the electrolytic system, respectively. In contrast to the chlor-alkali electrolysis, this method did not involve Cl oxidation and the standard potential of the anode was reduced. Additionally, NH4Cl was used as the electrolyte instead of NaCl; as a result, the generation of NH3·H2O instead of NaOH occurred in the catholyte and the cathodic pH dramatically decreased, thus reducing the cathodic potential for hydrogen evolution. The observed changes led to a 73.5% decrease in the energy consumption. Moreover, after the process of CO2 mineralization was optimized, SiO2 with a specific surface area of 221.8 m2 g−1 and CaCO3 with a purity of 99.9% were obtained.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Baciocchi R, Costa G, Zingaretti D (2014) Accelerated carbonation processes for carbon dioxide capture, storage and utilisation. In: Transformation and utilization of carbon dioxide, Springer, Berlin Heidelber, p 263 Baciocchi R, Costa G, Zingaretti D (2014) Accelerated carbonation processes for carbon dioxide capture, storage and utilisation. In: Transformation and utilization of carbon dioxide, Springer, Berlin Heidelber, p 263
Zurück zum Zitat Balucan RD, Dlugogorski BZ, Kennedy EM, Belova IV, Murch GE (2013) Energy cost of heat activating serpentinites for CO2 storage by mineralisation. Int J Greenh Gas Control 17:225–239CrossRef Balucan RD, Dlugogorski BZ, Kennedy EM, Belova IV, Murch GE (2013) Energy cost of heat activating serpentinites for CO2 storage by mineralisation. Int J Greenh Gas Control 17:225–239CrossRef
Zurück zum Zitat Bao W, Li H, Zhang Y (2010) Selective leaching of steelmaking slag for indirect CO2 mineral sequestration. Ind Eng Chem Res 49:2055–2063CrossRef Bao W, Li H, Zhang Y (2010) Selective leaching of steelmaking slag for indirect CO2 mineral sequestration. Ind Eng Chem Res 49:2055–2063CrossRef
Zurück zum Zitat Berner R, Lasaga A, Garrells R (1983) The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am J Sci 283:641–683CrossRef Berner R, Lasaga A, Garrells R (1983) The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am J Sci 283:641–683CrossRef
Zurück zum Zitat Chen Q, Wang T, Zhou P, Peng R (2001) Synthetic porous silica by wollastonite—study on technological conditions and product characteristics. J East China Geol Inst Chen Q, Wang T, Zhou P, Peng R (2001) Synthetic porous silica by wollastonite—study on technological conditions and product characteristics. J East China Geol Inst
Zurück zum Zitat Ding W, Fu L, Ouyang J, Yang H (2014) CO2 mineral sequestration by wollastonite carbonation. Phys Chem Miner 41:489–496CrossRef Ding W, Fu L, Ouyang J, Yang H (2014) CO2 mineral sequestration by wollastonite carbonation. Phys Chem Miner 41:489–496CrossRef
Zurück zum Zitat Flanagan DM (2015) Wollastonite. In: 2015 Minerals yearbook, USGS Flanagan DM (2015) Wollastonite. In: 2015 Minerals yearbook, USGS
Zurück zum Zitat Gerdemann SJ, O’Connor WK, Dahlin DC, Penner LR, Rush H (2007) Ex situ aqueous mineral carbonation. Environ Sci Technol 41:2587CrossRef Gerdemann SJ, O’Connor WK, Dahlin DC, Penner LR, Rush H (2007) Ex situ aqueous mineral carbonation. Environ Sci Technol 41:2587CrossRef
Zurück zum Zitat Ghoorah M, Dlugogorski BZ, Balucan RD, Kennedy EM (2014) Selection of acid for weak acid processing of wollastonite for mineralisation of CO2. Fuel 122:277–286CrossRef Ghoorah M, Dlugogorski BZ, Balucan RD, Kennedy EM (2014) Selection of acid for weak acid processing of wollastonite for mineralisation of CO2. Fuel 122:277–286CrossRef
Zurück zum Zitat Gupta H, Fan LS (2002) Carbonation–calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas. Ind Eng Chem Res 41:4035–4042CrossRef Gupta H, Fan LS (2002) Carbonation–calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas. Ind Eng Chem Res 41:4035–4042CrossRef
Zurück zum Zitat Hellmann R, Daval D, Wirth R (2013) Formation of amorphous silica surface layers by dissolution-reprecipitaton during chemical weathering: implications for CO2 uptake. Procedia Earth Planet Sci 7:346–349CrossRef Hellmann R, Daval D, Wirth R (2013) Formation of amorphous silica surface layers by dissolution-reprecipitaton during chemical weathering: implications for CO2 uptake. Procedia Earth Planet Sci 7:346–349CrossRef
Zurück zum Zitat Ho MT, Allinson GW, Wiley DE (2012) Reducing the cost of CO2 capture from flue gases using membrane technology. Ind Eng Chem Res 47:1562–1568CrossRef Ho MT, Allinson GW, Wiley DE (2012) Reducing the cost of CO2 capture from flue gases using membrane technology. Ind Eng Chem Res 47:1562–1568CrossRef
Zurück zum Zitat House KZ, House CH, Schrag DP, Aziz MJ (2007) Electrochemical acceleration of chemical weathering as an energetically feasible approach to mitigating anthropogenic climate change. Environ Sci Technol 41:8464–8470CrossRef House KZ, House CH, Schrag DP, Aziz MJ (2007) Electrochemical acceleration of chemical weathering as an energetically feasible approach to mitigating anthropogenic climate change. Environ Sci Technol 41:8464–8470CrossRef
Zurück zum Zitat Huijgen WJJ (2003) Carbon dioxide sequestration by mineral carbonation. Literature review. Energy Research Centre of the Netherlands Ur 3:13 Huijgen WJJ (2003) Carbon dioxide sequestration by mineral carbonation. Literature review. Energy Research Centre of the Netherlands Ur 3:13
Zurück zum Zitat Huijgen WJJ, Witkamp GJ, Comans RNJ (2006) Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process. Chem Eng Sci 61:4242–4251CrossRef Huijgen WJJ, Witkamp GJ, Comans RNJ (2006) Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process. Chem Eng Sci 61:4242–4251CrossRef
Zurück zum Zitat Jalali AA, Mohammadi F, Ashrafizadeh SN (2009) Effects of process conditions on cell voltage, current efficiency and voltage balance of a chlor-alkali membrane cell. Desalination 237:126–139CrossRef Jalali AA, Mohammadi F, Ashrafizadeh SN (2009) Effects of process conditions on cell voltage, current efficiency and voltage balance of a chlor-alkali membrane cell. Desalination 237:126–139CrossRef
Zurück zum Zitat Kojima T, Nagamine A, Ueno N, Uemiya S (1997) Absorption and fixation of carbon dioxide by rock weathering. Energy Convers Manag 38:237–242CrossRef Kojima T, Nagamine A, Ueno N, Uemiya S (1997) Absorption and fixation of carbon dioxide by rock weathering. Energy Convers Manag 38:237–242CrossRef
Zurück zum Zitat Lackner KS (2011) Carbonate chemistry for sequestering fossil carbon. Annu Rev Energy Environ 27:193–232CrossRef Lackner KS (2011) Carbonate chemistry for sequestering fossil carbon. Annu Rev Energy Environ 27:193–232CrossRef
Zurück zum Zitat Maqueda C, Rodríguez JLP, Justo A (1986) Problems in the dissolution of silicates by acid mixtures. Analyst 111:1107–1108CrossRef Maqueda C, Rodríguez JLP, Justo A (1986) Problems in the dissolution of silicates by acid mixtures. Analyst 111:1107–1108CrossRef
Zurück zum Zitat Myers SS et al (2014) Increasing CO2 threatens human nutrition. Nature 510:139–142CrossRef Myers SS et al (2014) Increasing CO2 threatens human nutrition. Nature 510:139–142CrossRef
Zurück zum Zitat O’Connor WK, Dahlin DC, Turner PC, Walters RP (2003) Carbon dioxide sequestration by ex-situ mineral carbonation. In: Proceedings of the 2nd Dixie Lee Ray memorial symposium: utilization of fossil fuel-generated carbon dioxide in agriculture and industry, vol 8, p 13 O’Connor WK, Dahlin DC, Turner PC, Walters RP (2003) Carbon dioxide sequestration by ex-situ mineral carbonation. In: Proceedings of the 2nd Dixie Lee Ray memorial symposium: utilization of fossil fuel-generated carbon dioxide in agriculture and industry, vol 8, p 13
Zurück zum Zitat O’Connor WK, Dahlin DC, Rush GE, Gerdemann SJ, Penner LR, Nilsen DN (2005) Aqueous mineral carbonation: mineral availability, pretreatment, reaction parametrics, and process studies. National Energy Technology Laboratory, Washington, DC O’Connor WK, Dahlin DC, Rush GE, Gerdemann SJ, Penner LR, Nilsen DN (2005) Aqueous mineral carbonation: mineral availability, pretreatment, reaction parametrics, and process studies. National Energy Technology Laboratory, Washington, DC
Zurück zum Zitat Olajire AA (2010) CO2 capture and separation technologies for end-of-pipe applications—a review. Energy 35:2610–2628CrossRef Olajire AA (2010) CO2 capture and separation technologies for end-of-pipe applications—a review. Energy 35:2610–2628CrossRef
Zurück zum Zitat Prout NM, Moorhouse JS (2012) Modern chlor-alkali technology. Elsevier, New York Prout NM, Moorhouse JS (2012) Modern chlor-alkali technology. Elsevier, New York
Zurück zum Zitat Rosenzweig C, Hillel D (2013) Climate change and the global harvest: potential impacts of the greenhouse effect on agriculture. J Agric Environ Ethics 79:479 Rosenzweig C, Hillel D (2013) Climate change and the global harvest: potential impacts of the greenhouse effect on agriculture. J Agric Environ Ethics 79:479
Zurück zum Zitat Schneider SH (1989) The greenhouse effect: science and policy. Science 243:771CrossRef Schneider SH (1989) The greenhouse effect: science and policy. Science 243:771CrossRef
Zurück zum Zitat Stevens SH, Kuuskraa VA, Gale J, Beecy D (2001) CO2 injection and sequestration in depleted oil and gas fields and deep coal seams: worldwide potential and costs. Environ Geosci 8:200–209CrossRef Stevens SH, Kuuskraa VA, Gale J, Beecy D (2001) CO2 injection and sequestration in depleted oil and gas fields and deep coal seams: worldwide potential and costs. Environ Geosci 8:200–209CrossRef
Zurück zum Zitat Venkatesh S, Tilak BV (1983) Chlor-alkali technology. J Chem Educ 60:276CrossRef Venkatesh S, Tilak BV (1983) Chlor-alkali technology. J Chem Educ 60:276CrossRef
Zurück zum Zitat Xie H, Wang Y, Chu W, Ju Y (2014a) Mineralization of flue gas CO2 with coproduction of valuable magnesium carbonate by means of magnesium chloride. Chin Sci Bull 59:2882–2889CrossRef Xie H, Wang Y, Chu W, Ju Y (2014a) Mineralization of flue gas CO2 with coproduction of valuable magnesium carbonate by means of magnesium chloride. Chin Sci Bull 59:2882–2889CrossRef
Zurück zum Zitat Xie H et al (2014b) Generation of electricity from CO2 mineralization: principle and realization. Sci China Technol Sci 57:2335–2343CrossRef Xie H et al (2014b) Generation of electricity from CO2 mineralization: principle and realization. Sci China Technol Sci 57:2335–2343CrossRef
Zurück zum Zitat Xie H et al (2015a) Thermodynamics study on the generation of electricity via CO2-mineralization cell. Environ Earth Sci 74:6481–6488CrossRef Xie H et al (2015a) Thermodynamics study on the generation of electricity via CO2-mineralization cell. Environ Earth Sci 74:6481–6488CrossRef
Zurück zum Zitat Xie H et al (2015b) Using electrochemical process to mineralize CO2 and separate Ca2+/Mg2+ ions from hard water to produce high value-added carbonates. Environ Earth Sci 73:6881–6890CrossRef Xie H et al (2015b) Using electrochemical process to mineralize CO2 and separate Ca2+/Mg2+ ions from hard water to produce high value-added carbonates. Environ Earth Sci 73:6881–6890CrossRef
Zurück zum Zitat Zingaretti D, Costa G, Baciocchi R (2014) Assessment of accelerated carbonation processes for CO2 storage using alkaline industrial residues. Ind Eng Chem Res 11:9311–9324CrossRef Zingaretti D, Costa G, Baciocchi R (2014) Assessment of accelerated carbonation processes for CO2 storage using alkaline industrial residues. Ind Eng Chem Res 11:9311–9324CrossRef
Metadaten
Titel
CO2 mineralization of natural wollastonite into porous silica and CaCO3 powders promoted via membrane electrolysis
verfasst von
Heping Xie
Fuhuan Wang
Yufei Wang
Tao Liu
Yifan Wu
Bin Liang
Publikationsdatum
01.02.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Environmental Earth Sciences / Ausgabe 4/2018
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-018-7330-9

Weitere Artikel der Ausgabe 4/2018

Environmental Earth Sciences 4/2018 Zur Ausgabe