Skip to main content
Erschienen in: Environmental Earth Sciences 22/2018

01.11.2018 | Original Article

A review on using heat as a tool for studying groundwater–surface water interactions

verfasst von: Jie Ren, Jiaqiang Cheng, Jie Yang, Yinjun Zhou

Erschienen in: Environmental Earth Sciences | Ausgabe 22/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In terms of the research on groundwater–surface water heat-tracing methods, investigation of the interactions within the compound system of the groundwater–surface water–hyporheic zone can effectively reveal the relevant physicochemical processes and microbial properties. The evaluation of these properties represents a key component in qualitative and quantitative research on groundwater–surface water interactions. Therefore, this paper reviews the research results on groundwater–surface water interactions achieved by related researchers using heat as a natural tracer over the last decade. In connection with the application of heat-tracing theory to the basic principles of hyporheic exchange between groundwater and surface water, research on groundwater–surface water interaction through one-dimensional steady-state and transient-state heat transport analytical models, techniques to collect and analyze temperature time series data, and numerical simulation technology is reviewed. In addition, directions for future research using groundwater–surface water heat-tracing methods are suggested. First, hypothetical, difficult temperature boundary and hydrogeological conditions require further research. Second, hydrodynamic exchange capacity and the processes of heat exchange and solute concentration exchange in the hyporheic zone alongside riverbeds should be appropriately and accurately measured under multi-scale influences. Third, the overall study of the heat transport process inside the hyporheic zone induced by complex riverbed forms should be performed, and the response mechanism of riverbed hyporheic exchanges driven by riverbed form, the hydrodynamic force of surface water, and sediment permeability should be revealed. The objectives and goals of this paper are to encourage scholars interested in analyzing groundwater–surface water interactions using heat as a tracer to creatively solve practical problems and to improve the ecological functions of river aquatic habitats through new research results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alexander MD, Caissie D (2003) Variability and comparison of hyporheic water temperatures and seepage fluxes in a small atlantic Salmon stream. Ground Water 41(1):72–82 Alexander MD, Caissie D (2003) Variability and comparison of hyporheic water temperatures and seepage fluxes in a small atlantic Salmon stream. Ground Water 41(1):72–82
Zurück zum Zitat Anderson MP (2005) Heat as a ground water tracer. Ground Water 43:951–968 Anderson MP (2005) Heat as a ground water tracer. Ground Water 43:951–968
Zurück zum Zitat Angermann L, Lewandowski J, Fleckenstein JH, Nützmann G (2012) A 3D analysis algorithm to improve interpretation of heat pulse sensor results for the determination of small-scale flow directions and velocities in the hyporheic zone. J Hydrol 475:1–11 Angermann L, Lewandowski J, Fleckenstein JH, Nützmann G (2012) A 3D analysis algorithm to improve interpretation of heat pulse sensor results for the determination of small-scale flow directions and velocities in the hyporheic zone. J Hydrol 475:1–11
Zurück zum Zitat Anibas C, Fleckenstein JH, Volze N, Buis K, Verhoeven R, Meire P, Batelaan O (2009) Transient or steady-state? Using vertical temperature profiles to quantify groundwater–surface water exchange. Hydrol Process 23:2165–2177 Anibas C, Fleckenstein JH, Volze N, Buis K, Verhoeven R, Meire P, Batelaan O (2009) Transient or steady-state? Using vertical temperature profiles to quantify groundwater–surface water exchange. Hydrol Process 23:2165–2177
Zurück zum Zitat Anibas C, Schneidewind U, Vandersteen G, Joris I, Seuntjens P, Batelaan O (2016) From streambed temperature measurements to spatial-temporal flux quantification: using the LPML method to study groundwater–surface water interaction. Hydrol Process 30:203–216 Anibas C, Schneidewind U, Vandersteen G, Joris I, Seuntjens P, Batelaan O (2016) From streambed temperature measurements to spatial-temporal flux quantification: using the LPML method to study groundwater–surface water interaction. Hydrol Process 30:203–216
Zurück zum Zitat Arrigoni AS, Poole GC, Mertes LAK, O’Daniel SJ, Woessner WW, Thomas SA (2008) Buffered, lagged, or cooled? Disentangling hyporheic influences on temperature cycles in stream channels. Water Resour Res 44:W09418 Arrigoni AS, Poole GC, Mertes LAK, O’Daniel SJ, Woessner WW, Thomas SA (2008) Buffered, lagged, or cooled? Disentangling hyporheic influences on temperature cycles in stream channels. Water Resour Res 44:W09418
Zurück zum Zitat Banks EW, Shanafield MA, Noorduijn S, McCallum J, Lewandowski J, Batelaan O (2018) Active heat pulse sensing of 3-D-flow fields in streambeds. Hydrol Earth Syst Sci 22:1917–1929 Banks EW, Shanafield MA, Noorduijn S, McCallum J, Lewandowski J, Batelaan O (2018) Active heat pulse sensing of 3-D-flow fields in streambeds. Hydrol Earth Syst Sci 22:1917–1929
Zurück zum Zitat Barlow JRB, Coupe RH (2009) Use of heat to estimate streambed fluxes during extreme hydrologic events. Water Resour Res 45:W01403 Barlow JRB, Coupe RH (2009) Use of heat to estimate streambed fluxes during extreme hydrologic events. Water Resour Res 45:W01403
Zurück zum Zitat Bastola H, Peterson EW Illinois (2016) Heat tracing to examine seasonal groundwater flow beneath a low-gradient stream in rural central. USA Hydrogeol J 24(1):1–14 Bastola H, Peterson EW Illinois (2016) Heat tracing to examine seasonal groundwater flow beneath a low-gradient stream in rural central. USA Hydrogeol J 24(1):1–14
Zurück zum Zitat Bhaskar AS, Harvey JW, Henry EJ (2012) Resolving hyporheic and groundwater components of streambed water flux using heat as a tracer. Water Resour Res 48:W08524 Bhaskar AS, Harvey JW, Henry EJ (2012) Resolving hyporheic and groundwater components of streambed water flux using heat as a tracer. Water Resour Res 48:W08524
Zurück zum Zitat Bianchin M, Smith L, Beckie R (2010) Quantifying hyporheic exchange in a tidal river using temperature time series. Water Resour Res 46:W07507 Bianchin M, Smith L, Beckie R (2010) Quantifying hyporheic exchange in a tidal river using temperature time series. Water Resour Res 46:W07507
Zurück zum Zitat Boano F, Harvey JW, Marion A, Packman AI, Revelli R, Ridolfi L, Wörman A (2014) Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications. Rev Geophys 52:603–679 Boano F, Harvey JW, Marion A, Packman AI, Revelli R, Ridolfi L, Wörman A (2014) Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications. Rev Geophys 52:603–679
Zurück zum Zitat Bredehoeft JD, Papadopolus IS (1965) Rates of vertical groundwater movement estimated from the earth’s thermal profile. Water Resour Res 1(2):325–328 Bredehoeft JD, Papadopolus IS (1965) Rates of vertical groundwater movement estimated from the earth’s thermal profile. Water Resour Res 1(2):325–328
Zurück zum Zitat Briggs MA, Lautz LK, Mckenzie JM (2012a) A comparison of fibre-optic distributed temperature sensing to traditional methods of evaluating groundwater inflow to streams. Hydrol Process 26(9):1277–1290 Briggs MA, Lautz LK, Mckenzie JM (2012a) A comparison of fibre-optic distributed temperature sensing to traditional methods of evaluating groundwater inflow to streams. Hydrol Process 26(9):1277–1290
Zurück zum Zitat Briggs MA, Lautz LK, McKenzie JM, Gordon RP, Hare DK (2012b) Using high-resolution distributed temperature sensing to quantify spatial and temporal variability in vertical hyporheic flux. Water Resour Res 48:W02527 Briggs MA, Lautz LK, McKenzie JM, Gordon RP, Hare DK (2012b) Using high-resolution distributed temperature sensing to quantify spatial and temporal variability in vertical hyporheic flux. Water Resour Res 48:W02527
Zurück zum Zitat Briggs MA, Buckley SF, Bagtzoglou AC, Werkema DD, Lane JW (2016) Actively heated high-resolution fiber-optic distributed temperature sensing to quantify streambed flow dynamics in zones of strong groundwater upwelling. Water Resour Res 52(7):5178–5194 Briggs MA, Buckley SF, Bagtzoglou AC, Werkema DD, Lane JW (2016) Actively heated high-resolution fiber-optic distributed temperature sensing to quantify streambed flow dynamics in zones of strong groundwater upwelling. Water Resour Res 52(7):5178–5194
Zurück zum Zitat Brookfield AE, Sudicky EA (2013) Implications of hyporheic flow on temperature-based estimates of groundwater/surface water interactions. J Hydrol Eng 18:1250–1261 Brookfield AE, Sudicky EA (2013) Implications of hyporheic flow on temperature-based estimates of groundwater/surface water interactions. J Hydrol Eng 18:1250–1261
Zurück zum Zitat Caissie D, Kurylyk BL, St-Hilaire A, El-Jabi N, MacQuarrie KTB (2014) Streambed temperature dynamics and corresponding heat fluxes in small streams experiencing seasonal ice cover. J Hydrol 519:1441–1452 Caissie D, Kurylyk BL, St-Hilaire A, El-Jabi N, MacQuarrie KTB (2014) Streambed temperature dynamics and corresponding heat fluxes in small streams experiencing seasonal ice cover. J Hydrol 519:1441–1452
Zurück zum Zitat Cardenas MB (2015) Hyporheic zone hydrologic science: a historical account of its emergence and a prospectus. Water Resour Res 51(5):3601–3616 Cardenas MB (2015) Hyporheic zone hydrologic science: a historical account of its emergence and a prospectus. Water Resour Res 51(5):3601–3616
Zurück zum Zitat Cardenas MB, Wilson JL (2007) Exchange across a sediment–water interface with ambient groundwater discharge. J Hydrol 346(3–4):69–80 Cardenas MB, Wilson JL (2007) Exchange across a sediment–water interface with ambient groundwater discharge. J Hydrol 346(3–4):69–80
Zurück zum Zitat Conant B (2004) Delineating and quantifying ground water discharge zones using streambed temperatures. Ground Water 42(2):243–257 Conant B (2004) Delineating and quantifying ground water discharge zones using streambed temperatures. Ground Water 42(2):243–257
Zurück zum Zitat Constantz J (2008) Heat as a tracer to determine streambed water exchanges. Water Resour Res 44:243–257 Constantz J (2008) Heat as a tracer to determine streambed water exchanges. Water Resour Res 44:243–257
Zurück zum Zitat Constantz J, Stewart AE, Niswonger R, Sarma L (2002) Analysis of temperature profiles for investigating stream losses beneath ephemeral channels. Water Resour Res 38(12):1316 Constantz J, Stewart AE, Niswonger R, Sarma L (2002) Analysis of temperature profiles for investigating stream losses beneath ephemeral channels. Water Resour Res 38(12):1316
Zurück zum Zitat Constantz J, Cox MH, Su GW (2003a) Comparison of heat and bromide as ground water tracers near streams. Ground Water 41(5):647–656 Constantz J, Cox MH, Su GW (2003a) Comparison of heat and bromide as ground water tracers near streams. Ground Water 41(5):647–656
Zurück zum Zitat Constantz J, Tyler SW, Kwicklis E (2003b) Temperature-profile methods for estimating percolation rates in arid environments. Vadose Zone J 2(1):12–24 Constantz J, Tyler SW, Kwicklis E (2003b) Temperature-profile methods for estimating percolation rates in arid environments. Vadose Zone J 2(1):12–24
Zurück zum Zitat Cranswick RH, Cook PG, Lamontagne S (2014) Hyporheic zone exchange fluxes and residence times inferred from riverbed temperature and radon data. J Hydrol 519:1870–1881 Cranswick RH, Cook PG, Lamontagne S (2014) Hyporheic zone exchange fluxes and residence times inferred from riverbed temperature and radon data. J Hydrol 519:1870–1881
Zurück zum Zitat Crispell JK, Endreny TA (2009) Hyporheic exchange flow around constructed in-channel structures and implications for restoration design. Hydrol Process 23:1158–1168 Crispell JK, Endreny TA (2009) Hyporheic exchange flow around constructed in-channel structures and implications for restoration design. Hydrol Process 23:1158–1168
Zurück zum Zitat Cuthbert MO, Mackay R (2013) Impacts of nonuniform flow on estimates of vertical streambed flux. Water Resour Res 49:19–28 Cuthbert MO, Mackay R (2013) Impacts of nonuniform flow on estimates of vertical streambed flux. Water Resour Res 49:19–28
Zurück zum Zitat Cuthbert MO, Mackay R, Durand V, Aller MF, Greswell RB, Rivett MO (2010) Impacts of river bed gas on the hydraulic and thermal dynamics of the hyporheic zone. Adv Water Resour 33(11):1347–1358 Cuthbert MO, Mackay R, Durand V, Aller MF, Greswell RB, Rivett MO (2010) Impacts of river bed gas on the hydraulic and thermal dynamics of the hyporheic zone. Adv Water Resour 33(11):1347–1358
Zurück zum Zitat Ebrahim GY, Hamonts K, vanGriensven A, Jonoski A, Dejonghe W, Mynett A (2012) Effect of temporal resolution of water level and temperature inputs on numerical simulation of groundwater–surface water flux exchange in a heavily modified urban river. Hydrol Process 27:1634–1645 Ebrahim GY, Hamonts K, vanGriensven A, Jonoski A, Dejonghe W, Mynett A (2012) Effect of temporal resolution of water level and temperature inputs on numerical simulation of groundwater–surface water flux exchange in a heavily modified urban river. Hydrol Process 27:1634–1645
Zurück zum Zitat Engelhardt I, Prommer H, Moore C, Schulz M, Schüth C, Ternes TA (2013) Suitability of temperature, hydraulic heads, and acesulfame to quantify wastewater-related fluxes in the hyporheic and riparian zone. Water Resour Res 49:426–440 Engelhardt I, Prommer H, Moore C, Schulz M, Schüth C, Ternes TA (2013) Suitability of temperature, hydraulic heads, and acesulfame to quantify wastewater-related fluxes in the hyporheic and riparian zone. Water Resour Res 49:426–440
Zurück zum Zitat Essaid HI, Zamora CM, McCarthy KA, Vogel JR, Wilson JT (2008) Using heat to characterize streambed water flux variability in four stream reaches. J Environ Qual 37:1010–1023 Essaid HI, Zamora CM, McCarthy KA, Vogel JR, Wilson JT (2008) Using heat to characterize streambed water flux variability in four stream reaches. J Environ Qual 37:1010–1023
Zurück zum Zitat Fanelli RM, Lautz LK (2008) Patterns of water, heat, and solute flux through streambeds around small dams. Ground Water 46:671–687 Fanelli RM, Lautz LK (2008) Patterns of water, heat, and solute flux through streambeds around small dams. Ground Water 46:671–687
Zurück zum Zitat Fleckenstein JH, Krause S, Hannah DM, Boano F (2010) Groundwater–surface water interactions: new methods and models to improve understanding of processes and dynamics. Adv Water Resour 33:1291–1295 Fleckenstein JH, Krause S, Hannah DM, Boano F (2010) Groundwater–surface water interactions: new methods and models to improve understanding of processes and dynamics. Adv Water Resour 33:1291–1295
Zurück zum Zitat Gordon RP, Lautz LK, Briggs MA, McKenzie JM (2012) Automated calculation of vertical pore-water flux from field temperature time series using the VFLUX method and computer program. J Hydrol 420–421:142–158 Gordon RP, Lautz LK, Briggs MA, McKenzie JM (2012) Automated calculation of vertical pore-water flux from field temperature time series using the VFLUX method and computer program. J Hydrol 420–421:142–158
Zurück zum Zitat Goto S, Yamano M, Kinoshita M (2005) Thermal response of sediment with vertical fluid flow to periodic temperature variation at the surface. J Geophys Res Solid Earth 110:211–226 Goto S, Yamano M, Kinoshita M (2005) Thermal response of sediment with vertical fluid flow to periodic temperature variation at the surface. J Geophys Res Solid Earth 110:211–226
Zurück zum Zitat Greswell RB, Riley MS, Alves PF, Tellam JH (2009) A heat perturbation flow meter for application in soft sediments. J Hydrol 370:73–82 Greswell RB, Riley MS, Alves PF, Tellam JH (2009) A heat perturbation flow meter for application in soft sediments. J Hydrol 370:73–82
Zurück zum Zitat Hannah DM, Malcolm IA, Bradley C (2009) Seasonal hyporheic temperature dynamics over riffle bedforms. Hydrol Process 23:2178–2194 Hannah DM, Malcolm IA, Bradley C (2009) Seasonal hyporheic temperature dynamics over riffle bedforms. Hydrol Process 23:2178–2194
Zurück zum Zitat Hatch CE, Fisher AT, Revenaugh JS, Constantz J, Ruehl C (2006) Quantifying surface water-groundwater interactions using time series analysis of streambed thermal records: method development. Water Resour Res 42:W10410 Hatch CE, Fisher AT, Revenaugh JS, Constantz J, Ruehl C (2006) Quantifying surface water-groundwater interactions using time series analysis of streambed thermal records: method development. Water Resour Res 42:W10410
Zurück zum Zitat Hatch CE, Fisher AT, Ruehl CR, Stemler G (2010) Spatial and temporal variations in streambed hydraulic conductivity quantified with time-series thermal methods. J Hydrol 389:276–288 Hatch CE, Fisher AT, Ruehl CR, Stemler G (2010) Spatial and temporal variations in streambed hydraulic conductivity quantified with time-series thermal methods. J Hydrol 389:276–288
Zurück zum Zitat Irvine DJ, Lautz LK (2015) High resolution mapping of hyporheic fluxes using streambed temperatures: recommendations and limitations. J Hydrol 524:137–146 Irvine DJ, Lautz LK (2015) High resolution mapping of hyporheic fluxes using streambed temperatures: recommendations and limitations. J Hydrol 524:137–146
Zurück zum Zitat Irvine DJ, Lautz LK, Briggs MA, Gordon RP, McKenzie JM (2015) Experimental evaluation of the applicability of phase, amplitude, and combined methods to determine water flux and thermal diffusivity from temperature time series using VFLUX 2. J Hydrol 531:728–737 Irvine DJ, Lautz LK, Briggs MA, Gordon RP, McKenzie JM (2015) Experimental evaluation of the applicability of phase, amplitude, and combined methods to determine water flux and thermal diffusivity from temperature time series using VFLUX 2. J Hydrol 531:728–737
Zurück zum Zitat Jensen JK, Engesgaard P (2011) Nonuniform groundwater discharge across a streambed: heat as a tracer. Vadose Zone J 10:98–109 Jensen JK, Engesgaard P (2011) Nonuniform groundwater discharge across a streambed: heat as a tracer. Vadose Zone J 10:98–109
Zurück zum Zitat Ju L, Zhang JJ, Chen C, Wu LS, Zeng LZ (2018) Water flux characterization through hydraulic head and temperature data assimilation: numerical modeling and sandbox experiments. J Hydrol 558:104–114 Ju L, Zhang JJ, Chen C, Wu LS, Zeng LZ (2018) Water flux characterization through hydraulic head and temperature data assimilation: numerical modeling and sandbox experiments. J Hydrol 558:104–114
Zurück zum Zitat Kalbus E, Reinstorf F, Schirmer M (2006) Measuring groundwater–surface water interactions: a review. Hydrol Earth Syst Sci 10:873–887 Kalbus E, Reinstorf F, Schirmer M (2006) Measuring groundwater–surface water interactions: a review. Hydrol Earth Syst Sci 10:873–887
Zurück zum Zitat Keery J, Binley A, Crook N, Smith JWN (2007) Temporal and spatial variability of groundwater–surface water fluxes: development and application of an analytical method using temperature time series. J Hydrol 336:1–16 Keery J, Binley A, Crook N, Smith JWN (2007) Temporal and spatial variability of groundwater–surface water fluxes: development and application of an analytical method using temperature time series. J Hydrol 336:1–16
Zurück zum Zitat Kim H, Lee KK, Lee JY (2014) Numerical verification of hyporheic zone depth estimation using streambed temperature. J Hydrol 511:861–869 Kim H, Lee KK, Lee JY (2014) Numerical verification of hyporheic zone depth estimation using streambed temperature. J Hydrol 511:861–869
Zurück zum Zitat Koch FW, Voytek EB, Day-Lewis FD, Healy R, Briggs MA, Lane JW, Werkema D (2016) 1DTempPro V2: new features for inferring groundwater/surface-water exchange. Ground Water 54(3):434–439 Koch FW, Voytek EB, Day-Lewis FD, Healy R, Briggs MA, Lane JW, Werkema D (2016) 1DTempPro V2: new features for inferring groundwater/surface-water exchange. Ground Water 54(3):434–439
Zurück zum Zitat Krause S, Hannah DM, Fleckenstein JH, Heppell CM, Kaeser D, Pickup R, Pinay G, Robertson AL, Wood PJ (2011) Inter-disciplinary perspectives on processes in the hyporheic zone. Ecohydrol 4:481–499 Krause S, Hannah DM, Fleckenstein JH, Heppell CM, Kaeser D, Pickup R, Pinay G, Robertson AL, Wood PJ (2011) Inter-disciplinary perspectives on processes in the hyporheic zone. Ecohydrol 4:481–499
Zurück zum Zitat Krause S, Boano F, Cuthbert MO, Fleckenstein JH, Lewandowski J (2014) Understanding process dynamics at aquifer-surface water interfaces: an introduction to the special section on new modeling approaches and novel experimental technologies. Water Resour Res 50:1847–1855 Krause S, Boano F, Cuthbert MO, Fleckenstein JH, Lewandowski J (2014) Understanding process dynamics at aquifer-surface water interfaces: an introduction to the special section on new modeling approaches and novel experimental technologies. Water Resour Res 50:1847–1855
Zurück zum Zitat Langston G, Hayashi M, Roy JW (2013) Quantifying groundwater–surface water interactions in a proglacial moraine using heat and solute tracers. Water Resour Res 49:5411–5426 Langston G, Hayashi M, Roy JW (2013) Quantifying groundwater–surface water interactions in a proglacial moraine using heat and solute tracers. Water Resour Res 49:5411–5426
Zurück zum Zitat Lautz LK (2010) Impacts of non-ideal field conditions on vertical water velocity estimates from streambed temperature time series. Water Resour Res 46:W01509 Lautz LK (2010) Impacts of non-ideal field conditions on vertical water velocity estimates from streambed temperature time series. Water Resour Res 46:W01509
Zurück zum Zitat Lewandowski J, Angermann L, Nützmann G, Fleckenstein JH (2011) A heat pulse technique for the determination of small-scale flow directions and velocities in the streambed of sand-bed streams. Hydrol Process 25:3244–3255 Lewandowski J, Angermann L, Nützmann G, Fleckenstein JH (2011) A heat pulse technique for the determination of small-scale flow directions and velocities in the streambed of sand-bed streams. Hydrol Process 25:3244–3255
Zurück zum Zitat Liu DS, Zhao J, Chen XB, Li YY, Weiyan SP, Feng MM (2018) Dynamic processes of hyporheic exchange and temperature distribution in the riparian zone in response to dam-induced water fluctuations. Geosci J 22(3):465–475 Liu DS, Zhao J, Chen XB, Li YY, Weiyan SP, Feng MM (2018) Dynamic processes of hyporheic exchange and temperature distribution in the riparian zone in response to dam-induced water fluctuations. Geosci J 22(3):465–475
Zurück zum Zitat Lu N, Ge SM (1996) Effect of horizontal heat and fluid flow on the vertical temperature distribution in a semiconfining layer. Water Resour Res 32(5):1449–1454 Lu N, Ge SM (1996) Effect of horizontal heat and fluid flow on the vertical temperature distribution in a semiconfining layer. Water Resour Res 32(5):1449–1454
Zurück zum Zitat Luce CH, Tonina D, Gariglio F, Applebee R (2013) Solutions for the diurnally forced advection-diffusion equation to estimate bulk fluid velocity and diffusivity in streambeds from temperature time series. Water Resour Res 49(1):488–506 Luce CH, Tonina D, Gariglio F, Applebee R (2013) Solutions for the diurnally forced advection-diffusion equation to estimate bulk fluid velocity and diffusivity in streambeds from temperature time series. Water Resour Res 49(1):488–506
Zurück zum Zitat Malard F, Mangin A, Uehlinger U, Ward JV (2001) Thermal heterogeneity in the hyporheic zone of a glacial floodplain. Can J Fish Aquat Sci 58:1319–1335 Malard F, Mangin A, Uehlinger U, Ward JV (2001) Thermal heterogeneity in the hyporheic zone of a glacial floodplain. Can J Fish Aquat Sci 58:1319–1335
Zurück zum Zitat Marzadri A, Tonina D, Bellin A (2013) Quantifying the importance of daily stream water temperature fluctuations on the hyporheic thermal regime: Implication for dissolved oxygen dynamics. J Hydrol 507:241–248 Marzadri A, Tonina D, Bellin A (2013) Quantifying the importance of daily stream water temperature fluctuations on the hyporheic thermal regime: Implication for dissolved oxygen dynamics. J Hydrol 507:241–248
Zurück zum Zitat Marzadri A, Tonina D, McKean JA, Tiedemann MG, Benjankar RM (2014) Multi-scale streambed topographic and discharge effects on hyporheic exchange at the stream network scale in confined streams. J Hydrol 519:1997–2011 Marzadri A, Tonina D, McKean JA, Tiedemann MG, Benjankar RM (2014) Multi-scale streambed topographic and discharge effects on hyporheic exchange at the stream network scale in confined streams. J Hydrol 519:1997–2011
Zurück zum Zitat McCallum AM, Andersen MS, Rau GC, Acworth RI (2012) A 1-D analytical method for estimating surface water–groundwater interactions and effective thermal diffusivity using temperature time series. Water Resour Res 48(11):76–78 McCallum AM, Andersen MS, Rau GC, Acworth RI (2012) A 1-D analytical method for estimating surface water–groundwater interactions and effective thermal diffusivity using temperature time series. Water Resour Res 48(11):76–78
Zurück zum Zitat Menichino GT, Hester ET (2014) Hydraulic and thermal effects of in-stream structure-induced hyporheic exchange across a range of hydraulic conductivities. Water Resour Res 50:4643–4661 Menichino GT, Hester ET (2014) Hydraulic and thermal effects of in-stream structure-induced hyporheic exchange across a range of hydraulic conductivities. Water Resour Res 50:4643–4661
Zurück zum Zitat Munz M, Schmidt C (2017) Estimation of vertical water fluxes from temperature time series by the inverse numerical computer program FLUX-BOT. Hydrol Process 31(15):2713–2724 Munz M, Schmidt C (2017) Estimation of vertical water fluxes from temperature time series by the inverse numerical computer program FLUX-BOT. Hydrol Process 31(15):2713–2724
Zurück zum Zitat Munz M, Oswald SE, Schmidt C (2016) Analysis of riverbed temperatures to determine the geometry of subsurface water flow around in-stream geomorphological structures. J Hydrol 539:74–87 Munz M, Oswald SE, Schmidt C (2016) Analysis of riverbed temperatures to determine the geometry of subsurface water flow around in-stream geomorphological structures. J Hydrol 539:74–87
Zurück zum Zitat Naganna SR, Deka PC, Ch S, Hansen WF (2017) Factors influencing streambed hydraulic conductivity and their implications on stream–aquifer interaction: a conceptual review. Environ Sci Pollut Res 24:24765–24789 Naganna SR, Deka PC, Ch S, Hansen WF (2017) Factors influencing streambed hydraulic conductivity and their implications on stream–aquifer interaction: a conceptual review. Environ Sci Pollut Res 24:24765–24789
Zurück zum Zitat Naranjo RC, Pohll G, Niswonger RG, Stone M, Mckay A (2013) Using heat as a tracer to estimate spatially distributed mean residence times in the hyporheic zone of a riffle-pool sequence. Water Resour Res 49:3697–3711 Naranjo RC, Pohll G, Niswonger RG, Stone M, Mckay A (2013) Using heat as a tracer to estimate spatially distributed mean residence times in the hyporheic zone of a riffle-pool sequence. Water Resour Res 49:3697–3711
Zurück zum Zitat Norman FA, Cardenas MB (2014) Heat transport in hyporheic zones due to bedforms: an experimental study. Water Resour Res 50:3568–3582 Norman FA, Cardenas MB (2014) Heat transport in hyporheic zones due to bedforms: an experimental study. Water Resour Res 50:3568–3582
Zurück zum Zitat Patschke SN (1999) Hyporheic exchange in a forested headwater stream. Simon Fraser University, Canada Patschke SN (1999) Hyporheic exchange in a forested headwater stream. Simon Fraser University, Canada
Zurück zum Zitat Rau GC, Andersen MS, McCallum AM, Acworth RI (2010) Analytical methods that use natural heat as a tracer to quantify surface water–groundwater exchange, evaluated using field temperature records. Hydrogeol J 18:1093–1110 Rau GC, Andersen MS, McCallum AM, Acworth RI (2010) Analytical methods that use natural heat as a tracer to quantify surface water–groundwater exchange, evaluated using field temperature records. Hydrogeol J 18:1093–1110
Zurück zum Zitat Rau GC, Andersen MS, McCallum AM, Roshan H, Acworth RI (2014) Heat as a tracer to quantify water flow in near-surface sediments. Earth Sci Rev 129:40–58 Rau GC, Andersen MS, McCallum AM, Roshan H, Acworth RI (2014) Heat as a tracer to quantify water flow in near-surface sediments. Earth Sci Rev 129:40–58
Zurück zum Zitat Roshan H, Rau GC, Andersen MS, Acworth IR (2012) Use of heat as tracer to quantify vertical streambed flow in a two-dimensional flow field. Water Resour Res 48(48):197–205 Roshan H, Rau GC, Andersen MS, Acworth IR (2012) Use of heat as tracer to quantify vertical streambed flow in a two-dimensional flow field. Water Resour Res 48(48):197–205
Zurück zum Zitat Ronan AD, Prudic DE, Thodal CE, Constantz J (1998) Field study and simulation of diurnal temperature effects on infiltration and variably saturated flow beneath an ephemeral stream. Water Resour Res 34(9):2137–2153 Ronan AD, Prudic DE, Thodal CE, Constantz J (1998) Field study and simulation of diurnal temperature effects on infiltration and variably saturated flow beneath an ephemeral stream. Water Resour Res 34(9):2137–2153
Zurück zum Zitat Samuel M, Jonathan L (2010) Using temperature modeling to investigate the temporal variability of river bed hydraulic conductivity during storm events. J Hydrol 388(3/4):321–334 Samuel M, Jonathan L (2010) Using temperature modeling to investigate the temporal variability of river bed hydraulic conductivity during storm events. J Hydrol 388(3/4):321–334
Zurück zum Zitat Schmidt C, Bayer-Raich M, Schirmer M (2006) Characterization of spatial heterogeneity of groundwater–stream water interactions using multiple depth streambed temperature measurements at the reach scale. Hydrol Earth Syst Sci 10:849–859 Schmidt C, Bayer-Raich M, Schirmer M (2006) Characterization of spatial heterogeneity of groundwater–stream water interactions using multiple depth streambed temperature measurements at the reach scale. Hydrol Earth Syst Sci 10:849–859
Zurück zum Zitat Schmidt C, Conant B, Bayer-Raich M, Schirmer M (2007) Evaluation and field-scale application of an analytical method to quantify groundwater discharge using mapped streambed temperatures. J Hydrol 347:292–307 Schmidt C, Conant B, Bayer-Raich M, Schirmer M (2007) Evaluation and field-scale application of an analytical method to quantify groundwater discharge using mapped streambed temperatures. J Hydrol 347:292–307
Zurück zum Zitat Schneidewind U, van Berkel M, Anibas C, Vandersteen G, Schmidt C, Joris I, Seuntjens P, Batelaan O, Zwart HJ (2016) LPMLE3: a novel 1-D approach to study water flow in streambeds using heat as a tracer. Water Resour Res 52:6596–6610 Schneidewind U, van Berkel M, Anibas C, Vandersteen G, Schmidt C, Joris I, Seuntjens P, Batelaan O, Zwart HJ (2016) LPMLE3: a novel 1-D approach to study water flow in streambeds using heat as a tracer. Water Resour Res 52:6596–6610
Zurück zum Zitat Schornberg C, Schmidt C, Kalbus E, Fleckenstein JH (2010) Simulating the effects of geologic heterogeneity and transient boundary conditions on streambed temperatures-implications for temperature-based water flux calculations. Adv Water Resour 33(11):1309–1319 Schornberg C, Schmidt C, Kalbus E, Fleckenstein JH (2010) Simulating the effects of geologic heterogeneity and transient boundary conditions on streambed temperatures-implications for temperature-based water flux calculations. Adv Water Resour 33(11):1309–1319
Zurück zum Zitat Selker J, van de Giesen N, Westhoff M, Luxemburg W, Parlange MB (2006) Fiber optics opens window on stream dynamics. Geophys Res Lett 33:L24401 Selker J, van de Giesen N, Westhoff M, Luxemburg W, Parlange MB (2006) Fiber optics opens window on stream dynamics. Geophys Res Lett 33:L24401
Zurück zum Zitat Silliman SE, Ramirez J, McCabe RL (1995) Quantifying downflow through creek sediments using temperature time-series: one-dimensional solution incorporating measured surface-temperature. J Hydrol 167:99–119 Silliman SE, Ramirez J, McCabe RL (1995) Quantifying downflow through creek sediments using temperature time-series: one-dimensional solution incorporating measured surface-temperature. J Hydrol 167:99–119
Zurück zum Zitat Smith JWN (2005) Groundwater–surface water interaction in the hyporheic zone. Science Report SC030155/SR1, Environment Agency, Bristol Smith JWN (2005) Groundwater–surface water interaction in the hyporheic zone. Science Report SC030155/SR1, Environment Agency, Bristol
Zurück zum Zitat Song JX, Zhang GT, Wang WZ, Liu Q, Jiang WW, Guo WQ, Tang B, Bai HF, Dou XY (2017) Variability in the vertical hyporheic water exchange affected by hydraulic conductivity and river morphology at a natural confluent meander bend. Hydrol Process 31:3407–3420 Song JX, Zhang GT, Wang WZ, Liu Q, Jiang WW, Guo WQ, Tang B, Bai HF, Dou XY (2017) Variability in the vertical hyporheic water exchange affected by hydraulic conductivity and river morphology at a natural confluent meander bend. Hydrol Process 31:3407–3420
Zurück zum Zitat Sophocleous M (1979) Analysis of water and heat flow in unsaturated–saturated porous media. Water Resour Res 15:1195–1206 Sophocleous M (1979) Analysis of water and heat flow in unsaturated–saturated porous media. Water Resour Res 15:1195–1206
Zurück zum Zitat Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67 Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67
Zurück zum Zitat Stallman RW (1965) Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature. J Geophys Res 70(12):2821–2827 Stallman RW (1965) Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature. J Geophys Res 70(12):2821–2827
Zurück zum Zitat Stonestrom DA, Constantz J (2003) Heat as a tool for studying the movement of ground water near streams. US Geol Surv Circ 1260:9 Stonestrom DA, Constantz J (2003) Heat as a tool for studying the movement of ground water near streams. US Geol Surv Circ 1260:9
Zurück zum Zitat Su XR, Shu LC, Chen XH, Lu CP, Wen ZH (2016) Interpreting the cross-sectional flow field in a river bank based on a genetic-algorithm two-dimensional heat-transport method (GA-VS2DH). Hydrogeol J 24:2035–2047 Su XR, Shu LC, Chen XH, Lu CP, Wen ZH (2016) Interpreting the cross-sectional flow field in a river bank based on a genetic-algorithm two-dimensional heat-transport method (GA-VS2DH). Hydrogeol J 24:2035–2047
Zurück zum Zitat Suzuki S (1960) Percolation measurements based on heat flow through soil with special reference to paddy fields. J Geophys Res 65(9):2883–2885 Suzuki S (1960) Percolation measurements based on heat flow through soil with special reference to paddy fields. J Geophys Res 65(9):2883–2885
Zurück zum Zitat Swanson TE, Cardenas MB (2011) Ex-Stream: a MATLAB program for calculating fluid flux through sediment–water interfaces based on steady and transient temperature profiles. Comput Geosci 37:1664–1669 Swanson TE, Cardenas MB (2011) Ex-Stream: a MATLAB program for calculating fluid flux through sediment–water interfaces based on steady and transient temperature profiles. Comput Geosci 37:1664–1669
Zurück zum Zitat Taniguchi M (1993) Evaluation of vertical groundwater fluxes and thermal properties of aquifers based on transient temperature-depth profiles. Water Resour Res 29(7):2021–2026 Taniguchi M (1993) Evaluation of vertical groundwater fluxes and thermal properties of aquifers based on transient temperature-depth profiles. Water Resour Res 29(7):2021–2026
Zurück zum Zitat Taniguchi M, Turner JV, Smith AJ (2003) Evaluations of groundwater discharge rates from subsurface temperature in Cockburn Sound, Western Australia. Biogeochemistry 66:111–124 Taniguchi M, Turner JV, Smith AJ (2003) Evaluations of groundwater discharge rates from subsurface temperature in Cockburn Sound, Western Australia. Biogeochemistry 66:111–124
Zurück zum Zitat Tonina D, Luce C, Gariglio F (2014) Quantifying streambed deposition and scour from stream and hyporheic water temperature time series. Water Resour Res 50:287–292 Tonina D, Luce C, Gariglio F (2014) Quantifying streambed deposition and scour from stream and hyporheic water temperature time series. Water Resour Res 50:287–292
Zurück zum Zitat Vandenbohede A, Lebbe L (2010) Parameter estimation based on vertical heat transport in the surficial zone. Hydrogeol J 18(4):931–943 Vandenbohede A, Lebbe L (2010) Parameter estimation based on vertical heat transport in the surficial zone. Hydrogeol J 18(4):931–943
Zurück zum Zitat Vogt T, Schneider P, Hahn-Woernle L, Cirpka OA (2010) Estimation of seepage rates in a losing stream by means of fiber-optic high-resolution vertical temperature profiling. J Hydrol 380(1/2):154–164 Vogt T, Schneider P, Hahn-Woernle L, Cirpka OA (2010) Estimation of seepage rates in a losing stream by means of fiber-optic high-resolution vertical temperature profiling. J Hydrol 380(1/2):154–164
Zurück zum Zitat Vogt T, Schirmer M, Cirpka OA (2012) Investigating riparian groundwater flow close to a losing river using diurnal temperature oscillations at high vertical resolution. Hydrol Earth Syst Sci 16:473–487 Vogt T, Schirmer M, Cirpka OA (2012) Investigating riparian groundwater flow close to a losing river using diurnal temperature oscillations at high vertical resolution. Hydrol Earth Syst Sci 16:473–487
Zurück zum Zitat Wilson AM, Woodward GL, Savidge WB (2016) Using heat as a tracer to estimate the depth of rapid porewater advection below the sediment–water interface. J Hydrol 538:743–753 Wilson AM, Woodward GL, Savidge WB (2016) Using heat as a tracer to estimate the depth of rapid porewater advection below the sediment–water interface. J Hydrol 538:743–753
Zurück zum Zitat Wondzell SM (2015) Groundwater–surface-water interactions: perspectives on the development of the science over the last 20 years. Freshw Sci 34(1):368–376 Wondzell SM (2015) Groundwater–surface-water interactions: perspectives on the development of the science over the last 20 years. Freshw Sci 34(1):368–376
Zurück zum Zitat Xie YQ, Batlle-Aguilar J (2017) Limits of heat as a tracer to quantify transient lateral river–aquifer exchanges. Water Resour Res 53:7740–7755 Xie YQ, Batlle-Aguilar J (2017) Limits of heat as a tracer to quantify transient lateral river–aquifer exchanges. Water Resour Res 53:7740–7755
Zurück zum Zitat Xie YQ, Cook PG, Shanafield M, Simmons CT, Zheng CM (2016) Uncertainty of natural tracer methods for quantifying river–aquifer interaction in a large river. J Hydrol 535:135–147 Xie YQ, Cook PG, Shanafield M, Simmons CT, Zheng CM (2016) Uncertainty of natural tracer methods for quantifying river–aquifer interaction in a large river. J Hydrol 535:135–147
Zurück zum Zitat Zheng LZ, Cardenas MB, Wang LC (2016) Temperature effects on nitrogen cycling and nitrate removal-production efficiency in bed form-induced hyporheic zones. J Geophys Res Biogeosci 121(4):1086–1103 Zheng LZ, Cardenas MB, Wang LC (2016) Temperature effects on nitrogen cycling and nitrate removal-production efficiency in bed form-induced hyporheic zones. J Geophys Res Biogeosci 121(4):1086–1103
Zurück zum Zitat Zhou T, Huang MY, Bao J, Hou ZS, Arntzen E, Mackley R, Crump A, Goldman AE, Song XH, Xu Y, Zachara J (2017) A new approach to quantify shallow water hydrologic exchanges in a large regulated river reach. Water 9:703 Zhou T, Huang MY, Bao J, Hou ZS, Arntzen E, Mackley R, Crump A, Goldman AE, Song XH, Xu Y, Zachara J (2017) A new approach to quantify shallow water hydrologic exchanges in a large regulated river reach. Water 9:703
Metadaten
Titel
A review on using heat as a tool for studying groundwater–surface water interactions
verfasst von
Jie Ren
Jiaqiang Cheng
Jie Yang
Yinjun Zhou
Publikationsdatum
01.11.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Environmental Earth Sciences / Ausgabe 22/2018
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-018-7959-4

Weitere Artikel der Ausgabe 22/2018

Environmental Earth Sciences 22/2018 Zur Ausgabe