Skip to main content
Erschienen in: International Journal of Machine Learning and Cybernetics 5/2016

01.10.2016 | Original Article

Mixed \(H_2/H_{\infty }\) pitch control of wind turbine generator system based on global exact linearization and regional pole placement

verfasst von: Mu Zhu, Jizhen Liu, Zhongwei Lin, Hongmin Meng

Erschienen in: International Journal of Machine Learning and Cybernetics | Ausgabe 5/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

When the wind power electricity system working above the rated wind speed, the disturbed wind speed can lead to the output ripple easily, which causes a significant negative influence on the stability of the power grid. In order to overcome this disadvantage, this paper discusses the mixed \(H_2/H_{\infty }\) pitch angle control design problem for the nonlinear wind turbine generator system, where the turbulence is regarded as the disturbance input. Especially, the global exact linearization and the pole placement techniques are also applied to guarantee the desired control performance and expected dynamic characteristics in the situation of a large-scale variety of the system operation points. The simulation results show the effectiveness of the proposed method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
2.
Zurück zum Zitat Muyeen SM (2012) Wind energy conversion systems: technology and trends. Springer, BerlinCrossRef Muyeen SM (2012) Wind energy conversion systems: technology and trends. Springer, BerlinCrossRef
3.
Zurück zum Zitat Jha AR (2011) Wind turbine technology. CRC Press, Florida Jha AR (2011) Wind turbine technology. CRC Press, Florida
4.
Zurück zum Zitat Mathew S, Philip GS (2011) Advances in wind energy conversion technology. Springer, Berlin Mathew S, Philip GS (2011) Advances in wind energy conversion technology. Springer, Berlin
5.
Zurück zum Zitat Munteanu L, Bratcu AL, Cutuluis NA (2008) Optimal control of wind energy systems. Springer, London Munteanu L, Bratcu AL, Cutuluis NA (2008) Optimal control of wind energy systems. Springer, London
6.
Zurück zum Zitat Senjyu T, Sakamoto R, Urasaki N et al (2006) Output power leveling of wind turbine generator for all operating regions by pitch angle control. IEEE Trans Energy Convers 21:467–475CrossRef Senjyu T, Sakamoto R, Urasaki N et al (2006) Output power leveling of wind turbine generator for all operating regions by pitch angle control. IEEE Trans Energy Convers 21:467–475CrossRef
7.
Zurück zum Zitat El-Tous Y (2008) Pitch angle control of variable speed wind turbine. Am J Eng Appl Sci 2:118–120CrossRef El-Tous Y (2008) Pitch angle control of variable speed wind turbine. Am J Eng Appl Sci 2:118–120CrossRef
8.
Zurück zum Zitat Lescher F, Zhao JY, Borne P (2005) Robust gain scheduling controller for pitch regulated variable speed wind turbine. Stud Inform Control 14:299–315 Lescher F, Zhao JY, Borne P (2005) Robust gain scheduling controller for pitch regulated variable speed wind turbine. Stud Inform Control 14:299–315
9.
Zurück zum Zitat Bianchi FD, Mantz RJ, Christiansen CF (2005) Gain scheduling control of variable speed wind energy conversion systems using quasi-LPV models. Control Eng Pract 13:247–255CrossRef Bianchi FD, Mantz RJ, Christiansen CF (2005) Gain scheduling control of variable speed wind energy conversion systems using quasi-LPV models. Control Eng Pract 13:247–255CrossRef
10.
Zurück zum Zitat Balas MJ, Wright A, Hand M et al (2003) Dynamics and control of horizontal axis wind turbines. In: The American control conference, Denver, Colorado, USA, pp 3781–3793 Balas MJ, Wright A, Hand M et al (2003) Dynamics and control of horizontal axis wind turbines. In: The American control conference, Denver, Colorado, USA, pp 3781–3793
11.
Zurück zum Zitat Slotha C, Esbensenb T, Stoustrup J (2011) Robust and fault-tolerant linear parameter-varying control of wind turbines. Mechatronics 21:645–659CrossRef Slotha C, Esbensenb T, Stoustrup J (2011) Robust and fault-tolerant linear parameter-varying control of wind turbines. Mechatronics 21:645–659CrossRef
12.
Zurück zum Zitat Bianchi FD, Battista HD, Mantz RJ (2007) Wind turbine control systems principles, modelling and gain scheduling design. Springer, Netherlands Bianchi FD, Battista HD, Mantz RJ (2007) Wind turbine control systems principles, modelling and gain scheduling design. Springer, Netherlands
13.
14.
Zurück zum Zitat Khalil HK (2002) Nonlinear system. Prentice Hall, London Khalil HK (2002) Nonlinear system. Prentice Hall, London
15.
Zurück zum Zitat Cheng D, Isidori A, Respondek W, Tarn TJ (1988) Exact linearization of nonlinear systems with outputs. Math Syst Theory 21:63–83MathSciNetCrossRefMATH Cheng D, Isidori A, Respondek W, Tarn TJ (1988) Exact linearization of nonlinear systems with outputs. Math Syst Theory 21:63–83MathSciNetCrossRefMATH
16.
Zurück zum Zitat Lin ZW, Lin Y, Zhang WH (2009) A unified design for state and output feedback \(H_{\infty }\) control of nonlinear stochastic Markovian jump systems with state and disturbance-dependent noise. Automatica 41:2955–2962CrossRefMATH Lin ZW, Lin Y, Zhang WH (2009) A unified design for state and output feedback \(H_{\infty }\) control of nonlinear stochastic Markovian jump systems with state and disturbance-dependent noise. Automatica 41:2955–2962CrossRefMATH
17.
Zurück zum Zitat Lin ZW, Liu JZ, Zhang WH, Niu YG (2011) Stabilization of interconnected nonlinear stochastic Markovian jump systems via dissipativity approach. Automatica 47:2796–2800MathSciNetCrossRefMATH Lin ZW, Liu JZ, Zhang WH, Niu YG (2011) Stabilization of interconnected nonlinear stochastic Markovian jump systems via dissipativity approach. Automatica 47:2796–2800MathSciNetCrossRefMATH
18.
Zurück zum Zitat Liu J, Meng H, Hu Y et al (2015) A novel MPPT method for enhancing energy conversion efficiency taking power smoothing into account. Energy Convers Manag 101:738–748CrossRef Liu J, Meng H, Hu Y et al (2015) A novel MPPT method for enhancing energy conversion efficiency taking power smoothing into account. Energy Convers Manag 101:738–748CrossRef
19.
Zurück zum Zitat Su X, Wu L, Shi P et al (2014) A novel approach to output feedback control of fuzzy stochastic systems. Automatica 50(12):3268–3275MathSciNetCrossRefMATH Su X, Wu L, Shi P et al (2014) A novel approach to output feedback control of fuzzy stochastic systems. Automatica 50(12):3268–3275MathSciNetCrossRefMATH
20.
Zurück zum Zitat Wang J (2014) Adaptive fuzzy control of direct-current motor dead-zone systems. Int J Innov Comput Inform Control 10(4):1391–1399 Wang J (2014) Adaptive fuzzy control of direct-current motor dead-zone systems. Int J Innov Comput Inform Control 10(4):1391–1399
21.
Zurück zum Zitat Su X, Shi P, Wu L et al (2013) A novel control design on discrete-time Takagi–Sugeno fuzzy systems with time-varying delays. IEEE Trans Fuzzy Syst 21(4):655–671CrossRef Su X, Shi P, Wu L et al (2013) A novel control design on discrete-time Takagi–Sugeno fuzzy systems with time-varying delays. IEEE Trans Fuzzy Syst 21(4):655–671CrossRef
22.
Zurück zum Zitat Wu L, Su X, Shi P (2015) Fuzzy control of nonlinear electromagnetic suspension systems. In: Fuzzy control systems with time-delay and stochastic perturbation. Springer International Publishing, Berlin, pp 289–307 Wu L, Su X, Shi P (2015) Fuzzy control of nonlinear electromagnetic suspension systems. In: Fuzzy control systems with time-delay and stochastic perturbation. Springer International Publishing, Berlin, pp 289–307
23.
Zurück zum Zitat Li YM, Tong SC, Li TS (2015) Observer-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control direction and unknown dead-zones. IEEE Trans Fuzzy Syst 23(4):1228–1241CrossRef Li YM, Tong SC, Li TS (2015) Observer-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control direction and unknown dead-zones. IEEE Trans Fuzzy Syst 23(4):1228–1241CrossRef
24.
Zurück zum Zitat Li YM, Tong SC, Liu YJ, Li TS (2014) Adaptive fuzzy robust output feedback control of nonlinear systems with unknown dead zones based on small-gain approach. IEEE Trans Fuzzy Syst 22(1):164–176CrossRef Li YM, Tong SC, Liu YJ, Li TS (2014) Adaptive fuzzy robust output feedback control of nonlinear systems with unknown dead zones based on small-gain approach. IEEE Trans Fuzzy Syst 22(1):164–176CrossRef
25.
Zurück zum Zitat Mistler V, Benallegue A, M’Sirdi NK (2001) Exact linearization and noninteracting control of a 4 rotors helicopter via dynamic feedback. In: IEEE international workshop on robot and human interactive communication, Bordeaux, Paris, pp 586–593 Mistler V, Benallegue A, M’Sirdi NK (2001) Exact linearization and noninteracting control of a 4 rotors helicopter via dynamic feedback. In: IEEE international workshop on robot and human interactive communication, Bordeaux, Paris, pp 586–593
26.
Zurück zum Zitat Chang LY, Chen HC (2014) Linearization and input–output decoupling for nonlinear control of proton exchange membrane fuel cells. Energies 7:591–606CrossRef Chang LY, Chen HC (2014) Linearization and input–output decoupling for nonlinear control of proton exchange membrane fuel cells. Energies 7:591–606CrossRef
27.
Zurück zum Zitat Famouri P (1992) Control of a linear permanent magnet brushless dc motor via exact linearization methods. IEEE Trans Energy Convers 7:544–551CrossRef Famouri P (1992) Control of a linear permanent magnet brushless dc motor via exact linearization methods. IEEE Trans Energy Convers 7:544–551CrossRef
28.
Zurück zum Zitat Chilali M, Gahinet P (1996) \(H_{\infty }\) design with pole placement constrains: an LMI approach. IEEE Trans Autom Control 41:358–367MathSciNetCrossRefMATH Chilali M, Gahinet P (1996) \(H_{\infty }\) design with pole placement constrains: an LMI approach. IEEE Trans Autom Control 41:358–367MathSciNetCrossRefMATH
29.
30.
Zurück zum Zitat Hassan HM, ElShafei AL, Farag WA, Saad MS (2012) A robust LMI-based pitch controller for large wind turbines. Renew Energy 4:63–71CrossRef Hassan HM, ElShafei AL, Farag WA, Saad MS (2012) A robust LMI-based pitch controller for large wind turbines. Renew Energy 4:63–71CrossRef
31.
Zurück zum Zitat Salle SA, Reardon D, Leithead WE, Grimble MJ (1990) Review of wind turbine control. Int J Control 52:1295–1310CrossRef Salle SA, Reardon D, Leithead WE, Grimble MJ (1990) Review of wind turbine control. Int J Control 52:1295–1310CrossRef
32.
Zurück zum Zitat Abdin ES, Xu W (2000) Control design and dynamic performance analysis of a wind turbine-induction generator unit. IEEE Trans EC 15:91–96 Abdin ES, Xu W (2000) Control design and dynamic performance analysis of a wind turbine-induction generator unit. IEEE Trans EC 15:91–96
33.
Zurück zum Zitat Golnaraghi F, Kuo BC (2010) Automatic control system, 9th edn. Wiley, USA Golnaraghi F, Kuo BC (2010) Automatic control system, 9th edn. Wiley, USA
34.
Zurück zum Zitat Dou ZL, Cheng MZ, Ling ZB et al (2010) An adjustable pitch control system in a large wind turbine based on a fuzzy-PID controller. In: International symposium on power electronics electrical drives automation and motion, pp 391–395 Dou ZL, Cheng MZ, Ling ZB et al (2010) An adjustable pitch control system in a large wind turbine based on a fuzzy-PID controller. In: International symposium on power electronics electrical drives automation and motion, pp 391–395
Metadaten
Titel
Mixed pitch control of wind turbine generator system based on global exact linearization and regional pole placement
verfasst von
Mu Zhu
Jizhen Liu
Zhongwei Lin
Hongmin Meng
Publikationsdatum
01.10.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
International Journal of Machine Learning and Cybernetics / Ausgabe 5/2016
Print ISSN: 1868-8071
Elektronische ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-016-0519-x

Weitere Artikel der Ausgabe 5/2016

International Journal of Machine Learning and Cybernetics 5/2016 Zur Ausgabe

Neuer Inhalt