Skip to main content
Erschienen in: Social Network Analysis and Mining 1/2021

01.12.2021 | Original Article

Predicting the number of customer transactions using stacked LSTM recurrent neural networks

verfasst von: M. V. Sebt, S. H. Ghasemi, S. S. Mehrkian

Erschienen in: Social Network Analysis and Mining | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Time series forecasting is used to predict future values on a data sequence using time-based data. Time series of transactions or count data are difficult to predict because of their complex nonlinear patterns. The purpose of this study is to provide a solution for predicting the number of upcoming transactions in order to predict the anomaly of the system, with the purpose of checking for why the number of transactions in the next day to be lower than expected. This can be a kind of customer churn prediction and can help system administrators identify and prevent potential losses and can improve existing infrastructure. Required data were collected from 780 company, which contains 353 rows of transactions in 2018 and has two variables, date and number of transactions; the number of transactions has been set as a target to predict. The autoregressive integrated moving average (ARIMA) model cannot deal with nonlinear relationships, while the neural network model, conversely, is capable of processing nonlinear patterns. In this study, a deep learning approach is presented. The approach is a stacked long short-term memory (LSTM) structure, a model derived from recurrent neural networks. To find the most accurate prediction model, the performance measures of various recurrent neural network, PROPHET, and ARIMA models are compared using the same dataset. Experimental results show that for predicting the number of transactions, the stacked LSTM model is better than other approaches.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Decline Curve Analysis.
 
2
Auto regression integrated moving average.
 
3
Gated Recurrent Unit.
 
Literatur
Zurück zum Zitat Aczon M, et al., (2017) Dynamic mortality risk predictions in pediatric critical care using recurrent neural networks. Aczon M, et al., (2017) Dynamic mortality risk predictions in pediatric critical care using recurrent neural networks.
Zurück zum Zitat Agrawal K et al (2017) Fusion of statistical and machine learning approaches for time series prediction using earth observation data. Int J Comput Sci Eng 14(3):255–266 Agrawal K et al (2017) Fusion of statistical and machine learning approaches for time series prediction using earth observation data. Int J Comput Sci Eng 14(3):255–266
Zurück zum Zitat Alkharif S, Lee K, Kim H (2018) Time-series analysis for price prediction of opportunistic cloud computing resources. in Proceedings of the 7th International Conference on Emerging Databases. Alkharif S, Lee K, Kim H (2018) Time-series analysis for price prediction of opportunistic cloud computing resources. in Proceedings of the 7th International Conference on Emerging Databases.
Zurück zum Zitat Ariyo AA, Adewumi AO, Ayo CK (2014) Stock price prediction using the ARIMA model. In 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation. IEEE. Ariyo AA, Adewumi AO, Ayo CK (2014) Stock price prediction using the ARIMA model. In 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation. IEEE.
Zurück zum Zitat Azoff EM (1994) Neural network time series forecasting of financial markets. John Wiley & Sons Inc Azoff EM (1994) Neural network time series forecasting of financial markets. John Wiley & Sons Inc
Zurück zum Zitat Ballesteros M et al (2017) Greedy transition-based dependency parsing with stack lstms. Comput Linguist 43(2):311–347MathSciNetCrossRef Ballesteros M et al (2017) Greedy transition-based dependency parsing with stack lstms. Comput Linguist 43(2):311–347MathSciNetCrossRef
Zurück zum Zitat Bengio Y, Courville A, Vincent P (2013) Representation learning: A review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828CrossRef Bengio Y, Courville A, Vincent P (2013) Representation learning: A review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828CrossRef
Zurück zum Zitat Cao L-J, Tay FEH (2003) Support vector machine with adaptive parameters in financial time series forecasting. IEEE Trans Neural Networks 14(6):1506–1518CrossRef Cao L-J, Tay FEH (2003) Support vector machine with adaptive parameters in financial time series forecasting. IEEE Trans Neural Networks 14(6):1506–1518CrossRef
Zurück zum Zitat De Gooijer JG, Hyndman RJ (2006) 25 years of time series forecasting. Int J Forecast 22(3):443–473CrossRef De Gooijer JG, Hyndman RJ (2006) 25 years of time series forecasting. Int J Forecast 22(3):443–473CrossRef
Zurück zum Zitat Du S. et al. (2020) Multivariate Time Series Forecasting via Attention-based Encoder-Decoder Framework. Neurocomputing. Du S. et al. (2020) Multivariate Time Series Forecasting via Attention-based Encoder-Decoder Framework. Neurocomputing.
Zurück zum Zitat Fan Z-P, Che Y-J, Chen Z-Y (2017) Product sales forecasting using online reviews and historical sales data: A method combining the Bass model and sentiment analysis. J Bus Res 74:90–100CrossRef Fan Z-P, Che Y-J, Chen Z-Y (2017) Product sales forecasting using online reviews and historical sales data: A method combining the Bass model and sentiment analysis. J Bus Res 74:90–100CrossRef
Zurück zum Zitat Faruk DÖ (2010) A hybrid neural network and ARIMA model for water quality time series prediction. Eng Appl Artif Intell 23(4):586–594MathSciNetCrossRef Faruk DÖ (2010) A hybrid neural network and ARIMA model for water quality time series prediction. Eng Appl Artif Intell 23(4):586–594MathSciNetCrossRef
Zurück zum Zitat Fu R, Zhang Z, Li L (2016) Using LSTM and GRU neural network methods for traffic flow prediction. in 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC). IEEE. Fu R, Zhang Z, Li L (2016) Using LSTM and GRU neural network methods for traffic flow prediction. in 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC). IEEE.
Zurück zum Zitat González-Caballero E, et al. (2021) Continuous linguistic variables and their applications to data mining and time series prediction. International Journal of Fuzzy Systems, 1–22. González-Caballero E, et al. (2021) Continuous linguistic variables and their applications to data mining and time series prediction. International Journal of Fuzzy Systems, 1–22.
Zurück zum Zitat Graves A, Mohamed A, Hinton G (2013) Speech recognition with deep recurrent neural networks. In 2013 IEEE international conference on acoustics, speech and signal processing. IEEE Graves A, Mohamed A, Hinton G (2013) Speech recognition with deep recurrent neural networks. In 2013 IEEE international conference on acoustics, speech and signal processing. IEEE
Zurück zum Zitat Guo J et al (2021) Mechanical fault time series prediction by using EFMSAE-LSTM neural network. Measurement 173:108566CrossRef Guo J et al (2021) Mechanical fault time series prediction by using EFMSAE-LSTM neural network. Measurement 173:108566CrossRef
Zurück zum Zitat Guo T, et al. (2016) Robust online time series prediction with recurrent neural networks. In 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA). IEEE. Guo T, et al. (2016) Robust online time series prediction with recurrent neural networks. In 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA). IEEE.
Zurück zum Zitat Hagenau M, Liebmann M, Neumann D (2013) Automated news reading: Stock price prediction based on financial news using context-capturing features. Decis Support Syst 55(3):685–697CrossRef Hagenau M, Liebmann M, Neumann D (2013) Automated news reading: Stock price prediction based on financial news using context-capturing features. Decis Support Syst 55(3):685–697CrossRef
Zurück zum Zitat Ho S, Xie M (1998) The use of ARIMA models for reliability forecasting and analysis. Comput Ind Eng 35(1–2):213–216CrossRef Ho S, Xie M (1998) The use of ARIMA models for reliability forecasting and analysis. Comput Ind Eng 35(1–2):213–216CrossRef
Zurück zum Zitat Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef
Zurück zum Zitat Hüsken M, Stagge P (2003) Recurrent neural networks for time series classification. Neurocomputing 50:223–235CrossRef Hüsken M, Stagge P (2003) Recurrent neural networks for time series classification. Neurocomputing 50:223–235CrossRef
Zurück zum Zitat Kamari A et al (2017) Decline curve based models for predicting natural gas well performance. Petroleum 3(2):242–248CrossRef Kamari A et al (2017) Decline curve based models for predicting natural gas well performance. Petroleum 3(2):242–248CrossRef
Zurück zum Zitat Krause B, et al. (2016) Multiplicative LSTM for sequence modelling. arXiv preprint arXiv:1609.07959. Krause B, et al. (2016) Multiplicative LSTM for sequence modelling. arXiv preprint arXiv:1609.07959.
Zurück zum Zitat Längkvist M, Karlsson L, Loutfi A (2014) A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recogn Lett 42:11–24CrossRef Längkvist M, Karlsson L, Loutfi A (2014) A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recogn Lett 42:11–24CrossRef
Zurück zum Zitat Li J et al (2021) DTDR–ALSTM: Extracting dynamic time-delays to reconstruct multivariate data for improving attention-based LSTM industrial time series prediction models. Knowl Based Syst 211:106508CrossRef Li J et al (2021) DTDR–ALSTM: Extracting dynamic time-delays to reconstruct multivariate data for improving attention-based LSTM industrial time series prediction models. Knowl Based Syst 211:106508CrossRef
Zurück zum Zitat Mahalakshmi G, Sridevi S, Rajaram S (2016) A survey on forecasting of time series data. In 2016 International Conference on Computing Technologies and Intelligent Data Engineering (ICCTIDE'16). IEEE. Mahalakshmi G, Sridevi S, Rajaram S (2016) A survey on forecasting of time series data. In 2016 International Conference on Computing Technologies and Intelligent Data Engineering (ICCTIDE'16). IEEE.
Zurück zum Zitat Majidpour M et al (2019) Fast univariate time series prediction of solar power for real-time control of energy storage system. Forecasting 1(1):107–120CrossRef Majidpour M et al (2019) Fast univariate time series prediction of solar power for real-time control of energy storage system. Forecasting 1(1):107–120CrossRef
Zurück zum Zitat Parmezan ARS, Souza VM, Batista GE (2019) Evaluation of statistical and machine learning models for time series prediction: Identifying the state-of-the-art and the best conditions for the use of each model. Inf Sci 484:302–337CrossRef Parmezan ARS, Souza VM, Batista GE (2019) Evaluation of statistical and machine learning models for time series prediction: Identifying the state-of-the-art and the best conditions for the use of each model. Inf Sci 484:302–337CrossRef
Zurück zum Zitat Pascanu R, Mikolov T, Bengio Y (2013) On the difficulty of training recurrent neural networks. in International conference on machine learning. Pascanu R, Mikolov T, Bengio Y (2013) On the difficulty of training recurrent neural networks. in International conference on machine learning.
Zurück zum Zitat Rabby MF et al (2021) Stacked LSTM based deep recurrent neural network with kalman smoothing for blood glucose prediction. BMC Med Inform Decis Mak 21(1):1–15CrossRef Rabby MF et al (2021) Stacked LSTM based deep recurrent neural network with kalman smoothing for blood glucose prediction. BMC Med Inform Decis Mak 21(1):1–15CrossRef
Zurück zum Zitat Ramos P, Santos N, Rebelo R (2015) Performance of state space and ARIMA models for consumer retail sales forecasting. Robotics Comput-Integr Manuf 34:151–163CrossRef Ramos P, Santos N, Rebelo R (2015) Performance of state space and ARIMA models for consumer retail sales forecasting. Robotics Comput-Integr Manuf 34:151–163CrossRef
Zurück zum Zitat Ruan L, et al. (2021) Workload time series prediction in storage systems: a deep learning based approach. Cluster Computing, p. 1–11. Ruan L, et al. (2021) Workload time series prediction in storage systems: a deep learning based approach. Cluster Computing, p. 1–11.
Zurück zum Zitat Sapankevych NI, Sankar R (2009) Time series prediction using support vector machines: a survey. IEEE Comput Intell Mag 4(2):24–38CrossRef Sapankevych NI, Sankar R (2009) Time series prediction using support vector machines: a survey. IEEE Comput Intell Mag 4(2):24–38CrossRef
Zurück zum Zitat Wei X et al (2021) Machine learning for pore-water pressure time-series prediction: Application of recurrent neural networks. Geosci Front 12(1):453–467CrossRef Wei X et al (2021) Machine learning for pore-water pressure time-series prediction: Application of recurrent neural networks. Geosci Front 12(1):453–467CrossRef
Zurück zum Zitat Xiao Y et al (2021) A dual-stage attention-based Conv-LSTM network for spatio-temporal correlation and multivariate time series prediction. Int J Intell Syst 36(5):2036–2057CrossRef Xiao Y et al (2021) A dual-stage attention-based Conv-LSTM network for spatio-temporal correlation and multivariate time series prediction. Int J Intell Syst 36(5):2036–2057CrossRef
Zurück zum Zitat Yenidoğan I, et al. (2018) Bitcoin Forecasting Using ARIMA and PROPHET. In 2018 3rd International Conference on Computer Science and Engineering (UBMK). IEEE. Yenidoğan I, et al. (2018) Bitcoin Forecasting Using ARIMA and PROPHET. In 2018 3rd International Conference on Computer Science and Engineering (UBMK). IEEE.
Metadaten
Titel
Predicting the number of customer transactions using stacked LSTM recurrent neural networks
verfasst von
M. V. Sebt
S. H. Ghasemi
S. S. Mehrkian
Publikationsdatum
01.12.2021
Verlag
Springer Vienna
Erschienen in
Social Network Analysis and Mining / Ausgabe 1/2021
Print ISSN: 1869-5450
Elektronische ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-021-00805-4

Weitere Artikel der Ausgabe 1/2021

Social Network Analysis and Mining 1/2021 Zur Ausgabe

Premium Partner