Skip to main content
Erschienen in: Metallography, Microstructure, and Analysis 5/2015

01.10.2015 | Technical Article

Dislocation Density Evolution During Creep of AZ31 Mg Alloy: A Study by X-ray Diffraction Line Profile Analysis

verfasst von: Peiman Shahbeigi Roodposhti, Apu Sarkar, Korukonda L. Murty, Ronald O. Scattergood

Erschienen in: Metallography, Microstructure, and Analysis | Ausgabe 5/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

X-ray diffraction line profile analysis technique was employed to investigate the dislocation density evolution during high temperature creep of Mg-3Al-1Zn alloy. The microstrains within the domain and dislocation density were calculated by the simplified Williamson–Hall and Williamson–Smallman methods. Further analysis on the possible dynamic recrystallization (DRX) and dynamic recovery (DRV) shows a relation between the number of dynamically recrystallized grains and the dislocation density. At constant temperature, higher stresses lead to more DRX and an enhancement on the dislocation density; whereas, at lower stresses the DRV is dominant leading to decrease in the dislocation density.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat N. Farahbakhsh, P. Shahbeigi Roodposhti, A.S. Ayoub, R.A. Venditti, and J.S. Jur, Melt Extrusion of polyethylene nanocomposites reinforced with nanofibrillated cellulose from cotton and wood sources. J. Appl. Polym. Sci. (2014), in press N. Farahbakhsh, P. Shahbeigi Roodposhti, A.S. Ayoub, R.A. Venditti, and J.S. Jur, Melt Extrusion of polyethylene nanocomposites reinforced with nanofibrillated cellulose from cotton and wood sources. J. Appl. Polym. Sci. (2014), in press
2.
Zurück zum Zitat P. Shahbeig Roodposhti, N. Farahbakhsh, A. Sarkar, K.L. Murty, A microstructural approach to the equal channel angular processing of commercially pure titanium—a review. Trans. Nonferrous Met. Soc. China 25, 1353–1366 (2015)CrossRef P. Shahbeig Roodposhti, N. Farahbakhsh, A. Sarkar, K.L. Murty, A microstructural approach to the equal channel angular processing of commercially pure titanium—a review. Trans. Nonferrous Met. Soc. China 25, 1353–1366 (2015)CrossRef
3.
Zurück zum Zitat S. Ansary, R. Mahmudi, M.J. Esfandyarpour, Creep of AZ31 Mg alloy: a comparison of impression and tensile behavior. Mater. Sci. Eng. A 556, 9–14 (2012)CrossRef S. Ansary, R. Mahmudi, M.J. Esfandyarpour, Creep of AZ31 Mg alloy: a comparison of impression and tensile behavior. Mater. Sci. Eng. A 556, 9–14 (2012)CrossRef
4.
Zurück zum Zitat B. Kondori, R. Mahmudi, Impression creep characteristics of a cast Mg alloy. Metall. Mater. Trans. A 40(8), 2007–2015 (2009)CrossRef B. Kondori, R. Mahmudi, Impression creep characteristics of a cast Mg alloy. Metall. Mater. Trans. A 40(8), 2007–2015 (2009)CrossRef
5.
Zurück zum Zitat Y. Chino, K. Sassa, A. Kamiya, M. Mabuchi, Stretch formability at elevated temperature of a cross-rolled AZ31 Mg alloy sheet with different rolling routes. Mater. Sci. Eng. A 473(1–2), 195–200 (2008)CrossRef Y. Chino, K. Sassa, A. Kamiya, M. Mabuchi, Stretch formability at elevated temperature of a cross-rolled AZ31 Mg alloy sheet with different rolling routes. Mater. Sci. Eng. A 473(1–2), 195–200 (2008)CrossRef
6.
Zurück zum Zitat P. Shahbeigi Roodposhti, A. Sarkar, K.L. Murty, Fracture behavior of AZ31 magnesium alloy during low stress high temperature deformation. Metallogr. Microstruct. Anal. 4, 91–101 (2015)CrossRef P. Shahbeigi Roodposhti, A. Sarkar, K.L. Murty, Fracture behavior of AZ31 magnesium alloy during low stress high temperature deformation. Metallogr. Microstruct. Anal. 4, 91–101 (2015)CrossRef
7.
Zurück zum Zitat P. Shahbeigi Roodposhti, A. Sarkar, K.L. Murty, Microstructure development of high temperature deformed AZ31 magnesium alloys. Mater. Sci. Eng. A 626, 195–202 (2015)CrossRef P. Shahbeigi Roodposhti, A. Sarkar, K.L. Murty, Microstructure development of high temperature deformed AZ31 magnesium alloys. Mater. Sci. Eng. A 626, 195–202 (2015)CrossRef
8.
Zurück zum Zitat R. Korla, A.H. Chokshi, A constitutive equation for grain boundary sliding: an experimental approach. Metall. Mater. Trans. A 45(2), 698–708 (2013)CrossRef R. Korla, A.H. Chokshi, A constitutive equation for grain boundary sliding: an experimental approach. Metall. Mater. Trans. A 45(2), 698–708 (2013)CrossRef
9.
Zurück zum Zitat R.B. Figueiredo, T.G. Langdon, Developing superplasticity in a magnesium AZ31 alloy by ECAP. J. Mater. Sci. 43(23–24), 7366–7371 (2008)CrossRef R.B. Figueiredo, T.G. Langdon, Developing superplasticity in a magnesium AZ31 alloy by ECAP. J. Mater. Sci. 43(23–24), 7366–7371 (2008)CrossRef
10.
Zurück zum Zitat S. Spigarelli, M. El Mehtedi, D. Ciccarelli, M. Regev, Effect of grain size on high temperature deformation of AZ31 alloy. Mater. Sci. Eng. A 528(22–23), 6919–6926 (2011)CrossRef S. Spigarelli, M. El Mehtedi, D. Ciccarelli, M. Regev, Effect of grain size on high temperature deformation of AZ31 alloy. Mater. Sci. Eng. A 528(22–23), 6919–6926 (2011)CrossRef
11.
Zurück zum Zitat S. Spigarelli, M. El Mehtedi, M. Cabibbo, E. Evangelista, J. Kaneko, A. Jäger, V. Gartnerova, Analysis of high-temperature deformation and microstructure of an AZ31 magnesium alloy. Mater. Sci. Eng. A 462(1–2), 197–201 (2007)CrossRef S. Spigarelli, M. El Mehtedi, M. Cabibbo, E. Evangelista, J. Kaneko, A. Jäger, V. Gartnerova, Analysis of high-temperature deformation and microstructure of an AZ31 magnesium alloy. Mater. Sci. Eng. A 462(1–2), 197–201 (2007)CrossRef
12.
Zurück zum Zitat H. Somekawa, K. Hirai, H. Watanabe, Y. Takigawa, K. Higashi, Dislocation creep behavior in Mg–Al–Zn alloys. Mater. Sci. Eng. A 407(1–2), 53–61 (2005)CrossRef H. Somekawa, K. Hirai, H. Watanabe, Y. Takigawa, K. Higashi, Dislocation creep behavior in Mg–Al–Zn alloys. Mater. Sci. Eng. A 407(1–2), 53–61 (2005)CrossRef
13.
Zurück zum Zitat K. Ishikawa, H. Watanabe, T. Mukai, High temperature compressive properties over a wide range of strain rates in an AZ31 magnesium alloy. J. Mater. Sci. 40(7), 1577–1582 (2005)CrossRef K. Ishikawa, H. Watanabe, T. Mukai, High temperature compressive properties over a wide range of strain rates in an AZ31 magnesium alloy. J. Mater. Sci. 40(7), 1577–1582 (2005)CrossRef
14.
Zurück zum Zitat A.G. Beer, M.R. Barnett, Influence of initial microstructure on the hot working flow stress of Mg–3Al–1Zn. Mater. Sci. Eng. A 423(1–2), 292–299 (2006)CrossRef A.G. Beer, M.R. Barnett, Influence of initial microstructure on the hot working flow stress of Mg–3Al–1Zn. Mater. Sci. Eng. A 423(1–2), 292–299 (2006)CrossRef
15.
Zurück zum Zitat S.-H. Choi, J.K. Kim, B.J. Kim, Y.B. Park, The effect of grain size distribution on the shape of flow stress curves of Mg–3Al–1Zn under uniaxial compression. Mater. Sci. Eng. A 488(1–2), 458–467 (2008)CrossRef S.-H. Choi, J.K. Kim, B.J. Kim, Y.B. Park, The effect of grain size distribution on the shape of flow stress curves of Mg–3Al–1Zn under uniaxial compression. Mater. Sci. Eng. A 488(1–2), 458–467 (2008)CrossRef
16.
Zurück zum Zitat H.-K. Kim, W.-J. Kim, Creep behavior of AZ31 magnesium alloy in low temperature range between 423 and 473 K. J. Mater. Sci. 42(15), 6171–6176 (2007)CrossRef H.-K. Kim, W.-J. Kim, Creep behavior of AZ31 magnesium alloy in low temperature range between 423 and 473 K. J. Mater. Sci. 42(15), 6171–6176 (2007)CrossRef
17.
Zurück zum Zitat J.A.D.E.L. Valle, O.A. Ruano, Deformation mechanisms responsible for the high ductility in a Mg AZ31 alloy analyzed by electron backscattered diffraction. Metall. Mater. Trans. A 36(June), 1427–1438 (2005)CrossRef J.A.D.E.L. Valle, O.A. Ruano, Deformation mechanisms responsible for the high ductility in a Mg AZ31 alloy analyzed by electron backscattered diffraction. Metall. Mater. Trans. A 36(June), 1427–1438 (2005)CrossRef
18.
Zurück zum Zitat S.W. Chung, C.S. Chung, D. Kum, Super plasticity in thin Magnesium alloy sheets and deformation mechanism maps for magnesium. Acta Mater. 49, 3337–3345 (2001)CrossRef S.W. Chung, C.S. Chung, D. Kum, Super plasticity in thin Magnesium alloy sheets and deformation mechanism maps for magnesium. Acta Mater. 49, 3337–3345 (2001)CrossRef
19.
Zurück zum Zitat K. Kitazono, E. Sato, K. Kuribayashi, Internal stress superplasticity in polycrystalline AZ31 magnesium alloy. Scr. Mater. 44(12), 2695–2702 (2001)CrossRef K. Kitazono, E. Sato, K. Kuribayashi, Internal stress superplasticity in polycrystalline AZ31 magnesium alloy. Scr. Mater. 44(12), 2695–2702 (2001)CrossRef
20.
Zurück zum Zitat H. Somekawa, T. Mukai, Molecular dynamics simulation of grain boundary plasticity in magnesium and solid-solution magnesium alloys. Comput. Mater. Sci. 77, 424–429 (2013)CrossRef H. Somekawa, T. Mukai, Molecular dynamics simulation of grain boundary plasticity in magnesium and solid-solution magnesium alloys. Comput. Mater. Sci. 77, 424–429 (2013)CrossRef
21.
Zurück zum Zitat P. Shahbeigi Roodposhti, A. Sarkar, K.L. Murty, in Creep Deformation Mechanisms and Related Microstructure Development of AZ31 Magnesium Alloy. Magnesium Technology (2015), pp. 29–34 P. Shahbeigi Roodposhti, A. Sarkar, K.L. Murty, in Creep Deformation Mechanisms and Related Microstructure Development of AZ31 Magnesium Alloy. Magnesium Technology (2015), pp. 29–34
22.
Zurück zum Zitat I. Gutierrez-Urrutia, D. Raabe, Dislocation density measurement by electron channeling contrast imaging in a scanning electron microscope. Scr. Mater. 66(6), 343–346 (2012)CrossRef I. Gutierrez-Urrutia, D. Raabe, Dislocation density measurement by electron channeling contrast imaging in a scanning electron microscope. Scr. Mater. 66(6), 343–346 (2012)CrossRef
23.
Zurück zum Zitat P. Mukherjee, A. Sarkar, P. Barat, S.K. Bandyopadhyay, P. Sen, S.K. Chattopadhyay, P. Chatterjee, S.K. Chatterjee, M.K. Mitra, Deformation characteristics of rolled zirconium alloys: a study by X-ray diffraction line profile analysis. Acta Mater. 52(19), 5687–5696 (2004)CrossRef P. Mukherjee, A. Sarkar, P. Barat, S.K. Bandyopadhyay, P. Sen, S.K. Chattopadhyay, P. Chatterjee, S.K. Chatterjee, M.K. Mitra, Deformation characteristics of rolled zirconium alloys: a study by X-ray diffraction line profile analysis. Acta Mater. 52(19), 5687–5696 (2004)CrossRef
24.
Zurück zum Zitat G. Dini, R. Ueji, A. Najafizadeh, S.M. Monir-Vaghefi, Flow stress analysis of TWIP steel via the XRD measurement of dislocation density. Mater. Sci. Eng. A 527(10–11), 2759–2763 (2010)CrossRef G. Dini, R. Ueji, A. Najafizadeh, S.M. Monir-Vaghefi, Flow stress analysis of TWIP steel via the XRD measurement of dislocation density. Mater. Sci. Eng. A 527(10–11), 2759–2763 (2010)CrossRef
25.
Zurück zum Zitat A. Sarkar, A. Bhowmik, S. Suwas, Microstructural characterization of ultrafine-grain interstitial-free steel by X-ray diffraction line profile analysis. Appl. Phys. A Mater. Sci. Process. 94(4), 943–948 (2009)CrossRef A. Sarkar, A. Bhowmik, S. Suwas, Microstructural characterization of ultrafine-grain interstitial-free steel by X-ray diffraction line profile analysis. Appl. Phys. A Mater. Sci. Process. 94(4), 943–948 (2009)CrossRef
26.
Zurück zum Zitat A. Sarkar, P. Mukherjee, P. Barat, X-ray diffraction studies on asymmetrically broadened peaks of heavily deformed zirconium-based alloys. Mater. Sci. Eng. A 485(1–2), 176–181 (2008)CrossRef A. Sarkar, P. Mukherjee, P. Barat, X-ray diffraction studies on asymmetrically broadened peaks of heavily deformed zirconium-based alloys. Mater. Sci. Eng. A 485(1–2), 176–181 (2008)CrossRef
27.
Zurück zum Zitat A. Sarkar, K.L. Murty, Microstructure–mechanical property correlation of cryo rolled Zircaloy-4. J. Nucl. Mater. 456, 287–291 (2015)CrossRef A. Sarkar, K.L. Murty, Microstructure–mechanical property correlation of cryo rolled Zircaloy-4. J. Nucl. Mater. 456, 287–291 (2015)CrossRef
28.
Zurück zum Zitat G. Williamson, W. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1(1), 22–31 (1953)CrossRef G. Williamson, W. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1(1), 22–31 (1953)CrossRef
29.
Zurück zum Zitat G.K. Williamson, R.E. Smallman, III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philos. Mag. 1(1), 34–46 (1956)CrossRef G.K. Williamson, R.E. Smallman, III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philos. Mag. 1(1), 34–46 (1956)CrossRef
30.
Zurück zum Zitat S. Mandal, A.K. Bhaduri, V. Subramanya, Sarma, A study on microstructural evolution and dynamic recrystallization during isothermal deformation of a Ti-modified austenitic stainless steel. Metall. Mater. Trans. A 42(4), 1062–1072 (2010)CrossRef S. Mandal, A.K. Bhaduri, V. Subramanya, Sarma, A study on microstructural evolution and dynamic recrystallization during isothermal deformation of a Ti-modified austenitic stainless steel. Metall. Mater. Trans. A 42(4), 1062–1072 (2010)CrossRef
31.
Zurück zum Zitat J. Deng, Y.C. Lin, S. Li, J. Chen, Y. Ding, Hot tensile deformation and fracture behaviors of AZ31 magnesium alloy. Mater. Des. 49, 209–219 (2013)CrossRef J. Deng, Y.C. Lin, S. Li, J. Chen, Y. Ding, Hot tensile deformation and fracture behaviors of AZ31 magnesium alloy. Mater. Des. 49, 209–219 (2013)CrossRef
Metadaten
Titel
Dislocation Density Evolution During Creep of AZ31 Mg Alloy: A Study by X-ray Diffraction Line Profile Analysis
verfasst von
Peiman Shahbeigi Roodposhti
Apu Sarkar
Korukonda L. Murty
Ronald O. Scattergood
Publikationsdatum
01.10.2015
Verlag
Springer US
Erschienen in
Metallography, Microstructure, and Analysis / Ausgabe 5/2015
Print ISSN: 2192-9262
Elektronische ISSN: 2192-9270
DOI
https://doi.org/10.1007/s13632-015-0220-6

Weitere Artikel der Ausgabe 5/2015

Metallography, Microstructure, and Analysis 5/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.