Skip to main content
Erschienen in: Network Modeling Analysis in Health Informatics and Bioinformatics 1-2/2012

01.06.2012 | Original Article

Data simulation and regulatory network reconstruction from time-series microarray data using stepwise multiple linear regression

verfasst von: Yiqian Zhou, Rehman Qureshi, Ahmet Sacan

Erschienen in: Network Modeling Analysis in Health Informatics and Bioinformatics | Ausgabe 1-2/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Time-series microarray data can capture dynamic genomic behavior not available in steady-state expression data, which has made time-series analysis especially useful in the study of dynamic cellular processes such as the circadian rhythm, disease progression, drug response, and the cell cycle. Using the information available in the time-series data, we address three related computational problems: the prediction of gene expression levels from previous time steps, the simulation of an entire time-series microarray dataset, and the reconstruction of gene regulatory networks. We model the gene expression levels using a linear model, due to its simplicity and the ability to interpret the coefficients as interactions in the underlying regulatory network. A stepwise multiple linear regression method is applied to fit the parameters of the linear model to a given training dataset. The learned model is utilized in predicting and replicating the time course of the expression levels and in identifying the regulatory interactions. Each predicted interaction is also associated with a statistical significance to provide a confidence measure that can guide prioritization in further costly manual or experimental verification. We demonstrate the performance of our approach on several yeast cell-cycle datasets and show that it provides comparable or greater accuracy than existing methods and provides additional quantitative information about the interactions not available from the other methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aach J, Church GM (2001) Aligning gene expression time series with time warping algorithms. Bioinformatics 17(6):495–508CrossRef Aach J, Church GM (2001) Aligning gene expression time series with time warping algorithms. Bioinformatics 17(6):495–508CrossRef
Zurück zum Zitat Abul O, Alhajj R, Polat F (2006) Asymptotical lower limits on required number of examples for learning Boolean networks computer and information sciences. In: Levi A, Savas E, Yenigün H, Balcisoy S, Saygin Y (eds) ISCIS 2006, Springer, Berlin, vol 4263, pp 154–164 Abul O, Alhajj R, Polat F (2006) Asymptotical lower limits on required number of examples for learning Boolean networks computer and information sciences. In: Levi A, Savas E, Yenigün H, Balcisoy S, Saygin Y (eds) ISCIS 2006, Springer, Berlin, vol 4263, pp 154–164
Zurück zum Zitat Almansoori W, Gao S, Jarada T, Elsheikh A, Murshed A, Jida J, Alhajj R, Rokne J (2012) Link prediction and classification in social networks and its application in healthcare and systems biology. Netw Model Anal Health Inform Bioinformatics, 1–10 Almansoori W, Gao S, Jarada T, Elsheikh A, Murshed A, Jida J, Alhajj R, Rokne J (2012) Link prediction and classification in social networks and its application in healthcare and systems biology. Netw Model Anal Health Inform Bioinformatics, 1–10
Zurück zum Zitat Andrecut M, Huang S, Kauffman SA (2008) Heuristic approach to sparse approximation of gene regulatory networks. J Comput Biol 15(9):1173–1186MathSciNetCrossRef Andrecut M, Huang S, Kauffman SA (2008) Heuristic approach to sparse approximation of gene regulatory networks. J Comput Biol 15(9):1173–1186MathSciNetCrossRef
Zurück zum Zitat Bansal M, Della Gatta G, di Bernardo D (2006) Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 22(7):815–822CrossRef Bansal M, Della Gatta G, di Bernardo D (2006) Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 22(7):815–822CrossRef
Zurück zum Zitat Bar-Joseph Z, Gerber GK, Gifford DK, Jaakkola TS, Simon I (2003a) Continuous representations of time-series gene expression data. J Comput Biol 10(3–4):341–356CrossRef Bar-Joseph Z, Gerber GK, Gifford DK, Jaakkola TS, Simon I (2003a) Continuous representations of time-series gene expression data. J Comput Biol 10(3–4):341–356CrossRef
Zurück zum Zitat Bar-Joseph Z, Gerber G, Simon I, Gifford DK, Jaakkola TS (2003b) Comparing the continuous representation of time-series expression profiles to identify differentially expressed genes. Proc Natl Acad Sci 100(18):10146–10151MathSciNetMATHCrossRef Bar-Joseph Z, Gerber G, Simon I, Gifford DK, Jaakkola TS (2003b) Comparing the continuous representation of time-series expression profiles to identify differentially expressed genes. Proc Natl Acad Sci 100(18):10146–10151MathSciNetMATHCrossRef
Zurück zum Zitat Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A (2005) Reverse engineering of regulatory networks in human B cells. Nat Genet 37(4):382–390CrossRef Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A (2005) Reverse engineering of regulatory networks in human B cells. Nat Genet 37(4):382–390CrossRef
Zurück zum Zitat Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc: Ser B (Methodol) 57(1):289–300MathSciNetMATH Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc: Ser B (Methodol) 57(1):289–300MathSciNetMATH
Zurück zum Zitat Berg BA (2004) Markov Chain Monte Carlo simulations and their statistical analysis (with Web-based Fortran code). World Scientific, Hackensack Berg BA (2004) Markov Chain Monte Carlo simulations and their statistical analysis (with Web-based Fortran code). World Scientific, Hackensack
Zurück zum Zitat Chen T, He HL, Church GM (1999) Modeling gene expression with differential equations. Pac Symp Biocomput 1999:29–40MATH Chen T, He HL, Church GM (1999) Modeling gene expression with differential equations. Pac Symp Biocomput 1999:29–40MATH
Zurück zum Zitat Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L, Wolfsberg TG, Gabrielian AE, Landsman D, Lockhart DJ et al (1998) A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 2(1):65–73CrossRef Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L, Wolfsberg TG, Gabrielian AE, Landsman D, Lockhart DJ et al (1998) A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 2(1):65–73CrossRef
Zurück zum Zitat di Bernardo D, Thompson MJ, Gardner TS, Chobot SE, Eastwood EL, Wojtovich AP, Elliott SJ, Schaus SE, Collins JJ (2005) Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nat Biotechnol 23(3):377–383CrossRef di Bernardo D, Thompson MJ, Gardner TS, Chobot SE, Eastwood EL, Wojtovich AP, Elliott SJ, Schaus SE, Collins JJ (2005) Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nat Biotechnol 23(3):377–383CrossRef
Zurück zum Zitat Draper N, Smith H (1998) Applied regression analysis (Wiley Series in Probability and Statistics). Wiley, Hoboken Draper N, Smith H (1998) Applied regression analysis (Wiley Series in Probability and Statistics). Wiley, Hoboken
Zurück zum Zitat Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif S, Collins JJ, Gardner TS (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 5(1):e8CrossRef Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif S, Collins JJ, Gardner TS (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 5(1):e8CrossRef
Zurück zum Zitat Fan X, Shi L, Fang H, Cheng Y, Perkins R, Tong W (2010) DNA microarrays are predictive of cancer prognosis: a re-evaluation. Clin Cancer Res 16(2):629–636CrossRef Fan X, Shi L, Fang H, Cheng Y, Perkins R, Tong W (2010) DNA microarrays are predictive of cancer prognosis: a re-evaluation. Clin Cancer Res 16(2):629–636CrossRef
Zurück zum Zitat Friedman N, Linial M, Nachman I, Pe’er D (2000) Using Bayesian networks to analyze expression data. J Comput Biol 7(3–4):601–620CrossRef Friedman N, Linial M, Nachman I, Pe’er D (2000) Using Bayesian networks to analyze expression data. J Comput Biol 7(3–4):601–620CrossRef
Zurück zum Zitat Gardner TS, Faith JJ (2005) Reverse-engineering transcription control networks. Phys Life Rev 2(1):65–88CrossRef Gardner TS, Faith JJ (2005) Reverse-engineering transcription control networks. Phys Life Rev 2(1):65–88CrossRef
Zurück zum Zitat Gardner TS, di Bernardo D, Lorenz D, Collins JJ (2003) Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301(5629):102–105CrossRef Gardner TS, di Bernardo D, Lorenz D, Collins JJ (2003) Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301(5629):102–105CrossRef
Zurück zum Zitat Golub TR, Slonim DK (1999) Molecular classification of cancer: class discovery and class prediction by gene expression. Science 286(5439):531CrossRef Golub TR, Slonim DK (1999) Molecular classification of cancer: class discovery and class prediction by gene expression. Science 286(5439):531CrossRef
Zurück zum Zitat Guelzim N, Bottani S, Bourgine P, Kepes F (2002) Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet 31(1):60–63CrossRef Guelzim N, Bottani S, Bourgine P, Kepes F (2002) Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet 31(1):60–63CrossRef
Zurück zum Zitat Hadi SCAS (2006) Regression analysis by example, 4th edn. Wiley, New York Hadi SCAS (2006) Regression analysis by example, 4th edn. Wiley, New York
Zurück zum Zitat Hartemink AJ, Gifford DK, Jaakkola TS, Young RA (2001) Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Pac Symp Biocomput 2001:422–433 Hartemink AJ, Gifford DK, Jaakkola TS, Young RA (2001) Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Pac Symp Biocomput 2001:422–433
Zurück zum Zitat Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R (2009) Gene regulatory network inference: data integration in dynamic models—a review. Biosystems 96(1):86–103CrossRef Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R (2009) Gene regulatory network inference: data integration in dynamic models—a review. Biosystems 96(1):86–103CrossRef
Zurück zum Zitat Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1):55–67MathSciNetMATH Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1):55–67MathSciNetMATH
Zurück zum Zitat Jeffery IB, Higgins DG, Culhane AC (2006) Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data. BMC Bioinformatics 7:359CrossRef Jeffery IB, Higgins DG, Culhane AC (2006) Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data. BMC Bioinformatics 7:359CrossRef
Zurück zum Zitat Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30CrossRef Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30CrossRef
Zurück zum Zitat Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22(3):437–467CrossRef Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22(3):437–467CrossRef
Zurück zum Zitat Andrecut MA, Kauffman SA (2006) Mean-field model of genetic regulatory networks. New J Phys 8(148) Andrecut MA, Kauffman SA (2006) Mean-field model of genetic regulatory networks. New J Phys 8(148)
Zurück zum Zitat Kim SY, Imoto S, Miyano S (2003) Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief Bioinformatics 4(3):228–235CrossRef Kim SY, Imoto S, Miyano S (2003) Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief Bioinformatics 4(3):228–235CrossRef
Zurück zum Zitat Kim S, Imoto S, Miyano S (2004) Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems 75(1–3):57–65CrossRef Kim S, Imoto S, Miyano S (2004) Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems 75(1–3):57–65CrossRef
Zurück zum Zitat Lindgren F, Geladi P, Wold S (1993) The kernel algorithm for PLS. J Chemom 7(1):45–59CrossRef Lindgren F, Geladi P, Wold S (1993) The kernel algorithm for PLS. J Chemom 7(1):45–59CrossRef
Zurück zum Zitat Luscombe NM, Madan Babu M, Yu H, Snyder M, Teichmann SA, Gerstein M (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431(7006):308–312CrossRef Luscombe NM, Madan Babu M, Yu H, Snyder M, Teichmann SA, Gerstein M (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431(7006):308–312CrossRef
Zurück zum Zitat Margolin A, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera R, Califano A (2006a) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7(Suppl 1):S7CrossRef Margolin A, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera R, Califano A (2006a) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7(Suppl 1):S7CrossRef
Zurück zum Zitat Margolin AA, Wang K, Lim WK, Kustagi M, Nemenman I, Califano A (2006b) Reverse engineering cellular networks. Nat Protoc 1(2):662–671CrossRef Margolin AA, Wang K, Lim WK, Kustagi M, Nemenman I, Califano A (2006b) Reverse engineering cellular networks. Nat Protoc 1(2):662–671CrossRef
Zurück zum Zitat Marquardt DW, Snee RD (1975) Ridge regression in practice. Am Stat 29(1):3–20MATH Marquardt DW, Snee RD (1975) Ridge regression in practice. Am Stat 29(1):3–20MATH
Zurück zum Zitat Mutch DM, Berger A, Mansourian R, Rytz A, Roberts MA (2002) The limit fold change model: a practical approach for selecting differentially expressed genes from microarray data. BMC Bioinformatics 3:17CrossRef Mutch DM, Berger A, Mansourian R, Rytz A, Roberts MA (2002) The limit fold change model: a practical approach for selecting differentially expressed genes from microarray data. BMC Bioinformatics 3:17CrossRef
Zurück zum Zitat Nachman I, Regev A, Friedman N (2004) Inferring quantitative models of regulatory networks from expression data. Bioinformatics 20(Suppl 1):i248–i256CrossRef Nachman I, Regev A, Friedman N (2004) Inferring quantitative models of regulatory networks from expression data. Bioinformatics 20(Suppl 1):i248–i256CrossRef
Zurück zum Zitat Opgen-Rhein R, Strimmer K (2007) From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst Biol 1(1):37CrossRef Opgen-Rhein R, Strimmer K (2007) From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst Biol 1(1):37CrossRef
Zurück zum Zitat Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32(Suppl):496–501CrossRef Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32(Suppl):496–501CrossRef
Zurück zum Zitat Rangel C, Angus J, Ghahramani Z, Lioumi M, Sotheran E, Gaiba A, Wild DL, Falciani F (2004) Modeling T-cell activation using gene expression profiling and state-space models. Bioinformatics 20(9):1361–1372CrossRef Rangel C, Angus J, Ghahramani Z, Lioumi M, Sotheran E, Gaiba A, Wild DL, Falciani F (2004) Modeling T-cell activation using gene expression profiling and state-space models. Bioinformatics 20(9):1361–1372CrossRef
Zurück zum Zitat Sakamoto E, Iba H (2001) Inferring a system of differential equations for a gene regulatory network by using genetic programming. In: Proceedings of the 2001 congress on evolutionary computation, 2001, vol 721, pp 720–726 Sakamoto E, Iba H (2001) Inferring a system of differential equations for a gene regulatory network by using genetic programming. In: Proceedings of the 2001 congress on evolutionary computation, 2001, vol 721, pp 720–726
Zurück zum Zitat Segal E, Shapira M, Regev A, Pe’er D, Botstein D, Koller D, Friedman N (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34(2):166–176CrossRef Segal E, Shapira M, Regev A, Pe’er D, Botstein D, Koller D, Friedman N (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34(2):166–176CrossRef
Zurück zum Zitat Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9(12):3273–3297 Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9(12):3273–3297
Zurück zum Zitat Stuart JM, Segal E, Koller D, Kim SK (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643):249–255CrossRef Stuart JM, Segal E, Koller D, Kim SK (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643):249–255CrossRef
Zurück zum Zitat Thieffry D, Huerta AM, Pérez-Rueda E, Collado-Vides J (1998) From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. BioEssays 20(5):433–440CrossRef Thieffry D, Huerta AM, Pérez-Rueda E, Collado-Vides J (1998) From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. BioEssays 20(5):433–440CrossRef
Zurück zum Zitat Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98(9):5116–5121MATHCrossRef Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98(9):5116–5121MATHCrossRef
Zurück zum Zitat van de Vijver MJ, He YD, Van’t Veer LJ, Dai H, Hart AAM, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009CrossRef van de Vijver MJ, He YD, Van’t Veer LJ, Dai H, Hart AAM, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009CrossRef
Zurück zum Zitat van Someren EP, Wessels LF, Reinders MJ (2000) Linear modeling of genetic networks from experimental data. Proc Int Conf Intell Syst Mol Biol 8:355–366 van Someren EP, Wessels LF, Reinders MJ (2000) Linear modeling of genetic networks from experimental data. Proc Int Conf Intell Syst Mol Biol 8:355–366
Zurück zum Zitat Weaver DC, Workman CT, Stormo GD (1999) Modeling regulatory networks with weight matrices. Pac Symp Biocomput 1999:112–123 Weaver DC, Workman CT, Stormo GD (1999) Modeling regulatory networks with weight matrices. Pac Symp Biocomput 1999:112–123
Zurück zum Zitat Wong DJ, Chang HY (2005) Learning more from microarrays: insights from modules and networks. J Investig Dermatol 125(2):175–182MathSciNet Wong DJ, Chang HY (2005) Learning more from microarrays: insights from modules and networks. J Investig Dermatol 125(2):175–182MathSciNet
Zurück zum Zitat Yao F, Jarboe LR, Dickerson JA (2010) Gene regulatory network reconstruction based on gene expression and transcription factor activities. In: BIOCOMP: 2010, pp 113–119 Yao F, Jarboe LR, Dickerson JA (2010) Gene regulatory network reconstruction based on gene expression and transcription factor activities. In: BIOCOMP: 2010, pp 113–119
Zurück zum Zitat Zhu G, Spellman PT, Volpe T, Brown PO, Botstein D, Davis TN, Futcher B (2000) Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature 406(6791):90–94CrossRef Zhu G, Spellman PT, Volpe T, Brown PO, Botstein D, Davis TN, Futcher B (2000) Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature 406(6791):90–94CrossRef
Metadaten
Titel
Data simulation and regulatory network reconstruction from time-series microarray data using stepwise multiple linear regression
verfasst von
Yiqian Zhou
Rehman Qureshi
Ahmet Sacan
Publikationsdatum
01.06.2012
Verlag
Springer Vienna
Erschienen in
Network Modeling Analysis in Health Informatics and Bioinformatics / Ausgabe 1-2/2012
Print ISSN: 2192-6662
Elektronische ISSN: 2192-6670
DOI
https://doi.org/10.1007/s13721-012-0008-4

Weitere Artikel der Ausgabe 1-2/2012

Network Modeling Analysis in Health Informatics and Bioinformatics 1-2/2012 Zur Ausgabe

Premium Partner