Skip to main content
Erschienen in: Advances in Manufacturing 1/2018

03.02.2018

Chatter stability prediction in high-speed micromilling of Ti6Al4V via finite element based microend mill dynamics

verfasst von: Kundan K. Singh, Ramesh Singh

Erschienen in: Advances in Manufacturing | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

High-speed micromilling (spindle speeds 100 000 r/min) can create complex three-dimensional microfeatures in difficult-to-machine materials. The micromachined surface must be of high quality, to meet functional requirements. However, chatter-induced dynamic instability deteriorates the surface quality and can be detrimental to tool life. Chatter-free machining can be accomplished by identifying stable process parameters via stability lobe diagram. To generate accurate stability lobe diagram, it is essential to determine the microend mill dynamics. Frequency response function is required to determine the tool-tip dynamics obtained by experimental impact analysis. Note that application of impact load at the microend mill tip (typically 100 – 500 μm) is not feasible as it would invariably end with tool failure. Consequently, alternative methods need to be developed to identify the microend mill dynamics. In the present work, the frequency response function for the microend mill is obtained by finite element method modal analysis. The frequency response function obtained from modal analysis has been verified from the experimentally obtained frequency response function. The experimental frequency response function was obtained by impacting the microend mill near the taper portion with an impact hammer and measuring the vibration of the tool-tip with a laser displacement sensor. The fundamental frequency obtained from finite element method modal analysis shows a difference of 6.6% from the experimental fundamental frequency. Microend mill dynamics obtained from the finite element method is used for chatter prediction in high-speed micromilling operations. The stability lobe diagram predicts the stability boundary accurately at 60 000 r · min–1 and 80 000 r/min; however, a slight deviation is observed at 100 000 r/min.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jun MB, DeVor RE, Kapoor SG (2006) Investigation of the dynamics of microend milling—part I: model development. J Manuf Sci Eng 128(4):893–900CrossRef Jun MB, DeVor RE, Kapoor SG (2006) Investigation of the dynamics of microend milling—part I: model development. J Manuf Sci Eng 128(4):893–900CrossRef
2.
Zurück zum Zitat Jin X, Altintas Y (2013) Chatter stability model of micro-milling with process damping. J Manuf Sci Eng 135(3):031011CrossRef Jin X, Altintas Y (2013) Chatter stability model of micro-milling with process damping. J Manuf Sci Eng 135(3):031011CrossRef
3.
Zurück zum Zitat Miao JC, Chen GL, Lai XM et al (2007) Review of dynamic issue in micro-end milling. Int J Adv Manuf Technol 31(9–10):897–904CrossRef Miao JC, Chen GL, Lai XM et al (2007) Review of dynamic issue in micro-end milling. Int J Adv Manuf Technol 31(9–10):897–904CrossRef
4.
Zurück zum Zitat Ducobu F, Filippi E, Rivière-Lorphèvre E (2009) Chip formation and minimum chip thickness in micro-milling. In: Proceedings of the CIRP conference on modeling of machining operations, pp 339–346 Ducobu F, Filippi E, Rivière-Lorphèvre E (2009) Chip formation and minimum chip thickness in micro-milling. In: Proceedings of the CIRP conference on modeling of machining operations, pp 339–346
5.
Zurück zum Zitat Quintana G, Ciurana J (2011) Chatter in machining processes: a review. Int J Mach Tools Manuf 51(5):363–376CrossRef Quintana G, Ciurana J (2011) Chatter in machining processes: a review. Int J Mach Tools Manuf 51(5):363–376CrossRef
6.
Zurück zum Zitat Graham E, Mehrpouya M, Nagamune R et al (2014) Robust prediction of chatter stability in micro milling comparing edge theorem and LMI. CIRP J Manuf Sci Technol 7(1):29–39CrossRef Graham E, Mehrpouya M, Nagamune R et al (2014) Robust prediction of chatter stability in micro milling comparing edge theorem and LMI. CIRP J Manuf Sci Technol 7(1):29–39CrossRef
7.
Zurück zum Zitat Rahnama R, Sajjadi M, Park SS (2009) Chatter suppression in micro end milling with process damping. J Mater Process Technol 209(17):5766–5776CrossRef Rahnama R, Sajjadi M, Park SS (2009) Chatter suppression in micro end milling with process damping. J Mater Process Technol 209(17):5766–5776CrossRef
8.
Zurück zum Zitat Malekian M, Park SS, Jun MB (2009) Modeling of dynamic micro-milling cutting forces. Int J Mach Tools Manuf 49(7):586–598CrossRef Malekian M, Park SS, Jun MB (2009) Modeling of dynamic micro-milling cutting forces. Int J Mach Tools Manuf 49(7):586–598CrossRef
9.
Zurück zum Zitat Afazov SM, Zdebski D, Ratchev SM et al (2013) Effects of micro-milling conditions on the cutting forces and process stability. J Mater Process Technol 213(5):671–684CrossRef Afazov SM, Zdebski D, Ratchev SM et al (2013) Effects of micro-milling conditions on the cutting forces and process stability. J Mater Process Technol 213(5):671–684CrossRef
10.
Zurück zum Zitat Afazov SM, Ratchev SM, Segal J et al (2012) Chatter modeling in micro-milling by considering process nonlinearities. Int J Mach Tools Manuf 56:28–38CrossRef Afazov SM, Ratchev SM, Segal J et al (2012) Chatter modeling in micro-milling by considering process nonlinearities. Int J Mach Tools Manuf 56:28–38CrossRef
11.
Zurück zum Zitat Mascardelli BA, Park SS, Freiheit T (2008) Substructure coupling of microend mills to aid in the suppression of chatter. J Manuf Sci Eng 130(1):119–129CrossRef Mascardelli BA, Park SS, Freiheit T (2008) Substructure coupling of microend mills to aid in the suppression of chatter. J Manuf Sci Eng 130(1):119–129CrossRef
12.
Zurück zum Zitat Mancisidor I, Urkiola A, Barcena R et al (2014) Receptance coupling for tool point dynamic prediction by fixed boundaries approach. Int J Mach Tools Manuf 78:18–29CrossRef Mancisidor I, Urkiola A, Barcena R et al (2014) Receptance coupling for tool point dynamic prediction by fixed boundaries approach. Int J Mach Tools Manuf 78:18–29CrossRef
13.
Zurück zum Zitat Singh KK, Kartik V, Singh R (2015) Modeling dynamic stability in high-speed micromilling of Ti-6Al-4V via velocity and chip load dependent cutting coefficients. Int J Mach Tools Manuf 96:56–66CrossRef Singh KK, Kartik V, Singh R (2015) Modeling dynamic stability in high-speed micromilling of Ti-6Al-4V via velocity and chip load dependent cutting coefficients. Int J Mach Tools Manuf 96:56–66CrossRef
14.
Zurück zum Zitat Song QH, Liu ZQ, Shi ZY (2014) Chatter stability for micromilling processes with flat end mill. Int J Adv Manuf Technol 71(5–8):1159–1174CrossRef Song QH, Liu ZQ, Shi ZY (2014) Chatter stability for micromilling processes with flat end mill. Int J Adv Manuf Technol 71(5–8):1159–1174CrossRef
15.
Zurück zum Zitat Schmitz TL, Donalson RR (2000) Predicting high-speed machining dynamics by substructure analysis. CIRP Ann Manuf Technol 49(1):303–308CrossRef Schmitz TL, Donalson RR (2000) Predicting high-speed machining dynamics by substructure analysis. CIRP Ann Manuf Technol 49(1):303–308CrossRef
16.
Zurück zum Zitat Altintas Y, Budak E (1995) Analytical prediction of stability lobes in milling. Ann CIRP 44(1):357–362CrossRef Altintas Y, Budak E (1995) Analytical prediction of stability lobes in milling. Ann CIRP 44(1):357–362CrossRef
17.
Zurück zum Zitat Altintas Y (2000) Manufacturing automation: principles of metal cutting and machine tool vibrations. Cambridge University Press, Cambridge Altintas Y (2000) Manufacturing automation: principles of metal cutting and machine tool vibrations. Cambridge University Press, Cambridge
18.
Zurück zum Zitat Documentation, Abaqus, and User Manual (2010) Version 6.10. Dassault systemes Documentation, Abaqus, and User Manual (2010) Version 6.10. Dassault systemes
19.
Zurück zum Zitat Simulia D (2011) Abaqus 6.11 theory manual. DS SIMULIA Corp., Providence Simulia D (2011) Abaqus 6.11 theory manual. DS SIMULIA Corp., Providence
20.
Zurück zum Zitat Schmitz TL, Smith KS (2008) Machining dynamics frequency response to improved productivity. Springer, Berlin Schmitz TL, Smith KS (2008) Machining dynamics frequency response to improved productivity. Springer, Berlin
21.
Zurück zum Zitat Singh KK, Singh R, Kartik V (2015) Comparative study of chatter detection methods for high-speed micromilling of Ti6Al4V. Procedia Manuf 1(1):593–606CrossRef Singh KK, Singh R, Kartik V (2015) Comparative study of chatter detection methods for high-speed micromilling of Ti6Al4V. Procedia Manuf 1(1):593–606CrossRef
22.
Zurück zum Zitat Singh KK, Kartik V, Singh R (2017) Modeling of dynamic instability via segmented cutting coefficients and chatter onset detection in high-speed micromilling of Ti6Al4V. J Manuf Sci Eng 139(5):051005CrossRef Singh KK, Kartik V, Singh R (2017) Modeling of dynamic instability via segmented cutting coefficients and chatter onset detection in high-speed micromilling of Ti6Al4V. J Manuf Sci Eng 139(5):051005CrossRef
Metadaten
Titel
Chatter stability prediction in high-speed micromilling of Ti6Al4V via finite element based microend mill dynamics
verfasst von
Kundan K. Singh
Ramesh Singh
Publikationsdatum
03.02.2018
Verlag
Shanghai University
Erschienen in
Advances in Manufacturing / Ausgabe 1/2018
Print ISSN: 2095-3127
Elektronische ISSN: 2195-3597
DOI
https://doi.org/10.1007/s40436-018-0210-4

Weitere Artikel der Ausgabe 1/2018

Advances in Manufacturing 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.