Skip to main content
Erschienen in: Current Sustainable/Renewable Energy Reports 4/2019

13.11.2019 | Electrification (J Logan, Section Editor)

Electrification of Industry: Potential, Challenges and Outlook

verfasst von: Max Wei, Colin A. McMillan, Stephane de la Rue du Can

Erschienen in: Current Sustainable/Renewable Energy Reports | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose of the Review

Industry is one of the most difficult sectors to decarbonize. With the rapidly falling cost of solar PV, wind power, and battery storage, industry electrification coupled with renewable electricity supply has the potential to be a key pathway to achieve industry decarbonization. This paper summarizes the latest research on the possibility of electrification of the industry sector.

Recent Findings

The transition to industry electrification would entail major changes in the energy system: large scale increases in renewable electricity or nuclear power supplies, the expansion of electricity transmission and distribution networks, completely different end-use technologies for process heating, and new infrastructure for distributing and dispensing hydrogen. Thus, aggressive and sustained supportive policies and much wider research, development, demonstration, and deployment activities are required to meet net zero carbon emissions goals in the industrial sector.

Summary

Existing economically competitive electrified industrial processes (such as electric arc furnaces for secondary steelmaking from scrap steel), coupled with zero-carbon electricity sources can sharply reduce greenhouse gas emissions (GHG) compared to manufacturing processes that rely on fossil fuels. Fuel switching in industry from fossil fuel–based process heating to electrified heat can offer many product and productivity benefits, but operating costs in general are much higher than fossil fuel-based heating. Either much lower costs of electricity and energy storage are required and/or new, cost-competitive electric-technology applications are needed to enable further electrification of industry. Indirect electrification i.e., hydrogen production via water electrolysis is another complimentary technology reliant on electricity. Hydrogen can be used as an energy carrier, industrial feedstock for products and fuels, or for long-duration energy storage, and thus can also play a key role in industry decarbonization when the hydrogen is produced from zero-carbon electricity and/or with carbon capture and storage. As with direct electrification, cost is the key barrier for the deployment of hydrogen resources.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
“Own-use” fuel refers to fuel that is produced during an industrial process and subsequently used as a fuel or as a feedstock. For example, blast furnace gas produced during the combustion of coke in the iron and steel industry is typically recovered and used as a fuel within the plant. Similarly, refinery fuel gas (a complex combination of light gases including nitrogen, hydrogen, and hydrocarbons) is produced from a refinery catalytic cracker unit and can be used for refinery own-use.
 
2
Note for some industrial processes, fossil fuel is used as both a fuel and as a material input, e.g., in extracting iron from iron ore using a blast furnace, coke is produced by heating coal in the absence of air and provides both the reducing agent for the reaction and also the heat source.
 
Literatur
1.
Zurück zum Zitat IEA. World energy balances. 2019th ed; 2019. IEA. World energy balances. 2019th ed; 2019.
2.
Zurück zum Zitat Fridley D, Lu H, Khanna N. Key China energy statistics 2014. 2014. Fridley D, Lu H, Khanna N. Key China energy statistics 2014. 2014.
3.
Zurück zum Zitat de la Rue du Can S, Khandekar A, Abhyankar N, Phadke A, Khanna NZ, Fridley D, et al. Modeling India’s energy future using a bottom-up approach. Appl Energy. 2019;238:1108–25.CrossRef de la Rue du Can S, Khandekar A, Abhyankar N, Phadke A, Khanna NZ, Fridley D, et al. Modeling India’s energy future using a bottom-up approach. Appl Energy. 2019;238:1108–25.CrossRef
5.
Zurück zum Zitat Orfeuil M. Electric process heating: technologies/equipment/applications. Columbus: Battelle Press; 1987. Orfeuil M. Electric process heating: technologies/equipment/applications. Columbus: Battelle Press; 1987.
6.
Zurück zum Zitat de la Rue du Can S, Price L, Zhou N, Phadke A. China and India: energy service and related material demand projections. 38th Int. Energy Work. June 3–5, 2019, Paris, Fr. 2019. de la Rue du Can S, Price L, Zhou N, Phadke A. China and India: energy service and related material demand projections. 38th Int. Energy Work. June 3–5, 2019, Paris, Fr. 2019.
7.
Zurück zum Zitat U.S. EIA. Manufacturing energy consumption survey 2014. Washington; 2017. U.S. EIA. Manufacturing energy consumption survey 2014. Washington; 2017.
8.
Zurück zum Zitat U.S. DOE. Quadrennial technology review 2015. Washington, D.C.; 2015. U.S. DOE. Quadrennial technology review 2015. Washington, D.C.; 2015.
10.
Zurück zum Zitat Wulf C, Linßen J, Zapp P. Review of power-to-gas projects in Europe. In: Energy procedia: Elsevier Ltd; 2018. p. 367–78.CrossRef Wulf C, Linßen J, Zapp P. Review of power-to-gas projects in Europe. In: Energy procedia: Elsevier Ltd; 2018. p. 367–78.CrossRef
11.
Zurück zum Zitat • IEA. The future of hydrogen: seizing today’s opportunities. 203. 2019. This paper provides a comprehensive overview of hydrogen including discussion of generation approaches, storage, distribution and transmission, present and potential industrial uses of hydrogen, and supportive policies. • IEA. The future of hydrogen: seizing today’s opportunities. 203. 2019. This paper provides a comprehensive overview of hydrogen including discussion of generation approaches, storage, distribution and transmission, present and potential industrial uses of hydrogen, and supportive policies.
12.
Zurück zum Zitat • Philibert C. Direct and indirect electrification of industry and beyond. Oxf Rev Econ Policy. 2019;35:197–217 This paper provides a summary of technology options for industry sectors with high process temperatures and a good summary of policy considerations at the international level. CrossRef • Philibert C. Direct and indirect electrification of industry and beyond. Oxf Rev Econ Policy. 2019;35:197–217 This paper provides a summary of technology options for industry sectors with high process temperatures and a good summary of policy considerations at the international level. CrossRef
14.
Zurück zum Zitat Deason J, Wei M, Leventis G, Smith S, Schwartz L. Electrification of buildings and industry in the United States. Drivers, barriers, prospects, and policy approaches. 2018. Deason J, Wei M, Leventis G, Smith S, Schwartz L. Electrification of buildings and industry in the United States. Drivers, barriers, prospects, and policy approaches. 2018.
15.
Zurück zum Zitat Vairamohan B. Energy savings with induction heating overview, applications and case studies. 2014. Vairamohan B. Energy savings with induction heating overview, applications and case studies. 2014.
16.
Zurück zum Zitat (EFI) EFI. Pathways for California decarbonization - optionality, flexibility & innovation. 2019. (EFI) EFI. Pathways for California decarbonization - optionality, flexibility & innovation. 2019.
17.
Zurück zum Zitat Pérez-Aparicio E, Lillo-Bravo I, Moreno-Tejera S, Silva-Pérez M. Economical and environmental analysis of thermal and photovoltaic solar energy as source of heat for industrial processes. In: AIP Conf. Proc. AIP Publishing, 2017. p 180005 Pérez-Aparicio E, Lillo-Bravo I, Moreno-Tejera S, Silva-Pérez M. Economical and environmental analysis of thermal and photovoltaic solar energy as source of heat for industrial processes. In: AIP Conf. Proc. AIP Publishing, 2017. p 180005
18.
Zurück zum Zitat • Meyers S, Schmitt B, Vajen K. Renewable process heat from solar thermal and photovoltaics: the development and application of a universal methodology to determine the more economical technology. Appl Energy. 2018;212:1537–52 This paper develops a parameterized approach that enables streamlined comparisons of solar thermal and PV technologies to provide industry process heat. CrossRef • Meyers S, Schmitt B, Vajen K. Renewable process heat from solar thermal and photovoltaics: the development and application of a universal methodology to determine the more economical technology. Appl Energy. 2018;212:1537–52 This paper develops a parameterized approach that enables streamlined comparisons of solar thermal and PV technologies to provide industry process heat. CrossRef
19.
Zurück zum Zitat Meyers S, Schmitt B, Vajen K. The future of low carbon industrial process heat: a comparison between solar thermal and heat pumps. Sol Energy. 2018;173:893–904.CrossRef Meyers S, Schmitt B, Vajen K. The future of low carbon industrial process heat: a comparison between solar thermal and heat pumps. Sol Energy. 2018;173:893–904.CrossRef
20.
Zurück zum Zitat Shoreh MH, Siano P, Shafie-khah M, Loia V, Catalão JPS. A survey of industrial applications of demand response. Electr Power Syst Res. 2016;141:31–49.CrossRef Shoreh MH, Siano P, Shafie-khah M, Loia V, Catalão JPS. A survey of industrial applications of demand response. Electr Power Syst Res. 2016;141:31–49.CrossRef
21.
Zurück zum Zitat Dorreen M, Wright L, Matthews G, Patel P, Wong DS. Transforming the way electricity is consumed during the aluminium smelting process. In: Zhang L, Drelich JW, Neelameggham NR, et al., editors. Energy Technol: Springer International Publishing; 2017. p. 15–25. Dorreen M, Wright L, Matthews G, Patel P, Wong DS. Transforming the way electricity is consumed during the aluminium smelting process. In: Zhang L, Drelich JW, Neelameggham NR, et al., editors. Energy Technol: Springer International Publishing; 2017. p. 15–25.
22.
Zurück zum Zitat Sharma A, Zhao F, Sutherland JW. Econological scheduling of a manufacturing enterprise operating under a time-of-use electricity tariff. J Clean Prod. 2015;108:256–70.CrossRef Sharma A, Zhao F, Sutherland JW. Econological scheduling of a manufacturing enterprise operating under a time-of-use electricity tariff. J Clean Prod. 2015;108:256–70.CrossRef
23.
Zurück zum Zitat White House. United States Mid-Century Strategy for deep decarbonization. Washington, D.C; 2016. White House. United States Mid-Century Strategy for deep decarbonization. Washington, D.C; 2016.
24.
Zurück zum Zitat Chan Y, Petithuguenin L, Fleiter T, Herbst A, Arens M, Stevenson P. Industrial innovation: pathways to deep decarbonisation of industry. Part 1: technology analysis. London: ICF Consulting Services Limited and Fraunhofer ISI; 2019. Chan Y, Petithuguenin L, Fleiter T, Herbst A, Arens M, Stevenson P. Industrial innovation: pathways to deep decarbonisation of industry. Part 1: technology analysis. London: ICF Consulting Services Limited and Fraunhofer ISI; 2019.
25.
Zurück zum Zitat Fleiter T, Herbst A, Rehfeldt M, Arens M. Industrial innovation: pathways to deep decarbonisation of industry. Part 2: scenario analysis and pathways to deep decarbonisation. London: ICF Consulting Services Limited and Fraunhofer Institute for Systems and Innovation Research (ISI); 2019. Fleiter T, Herbst A, Rehfeldt M, Arens M. Industrial innovation: pathways to deep decarbonisation of industry. Part 2: scenario analysis and pathways to deep decarbonisation. London: ICF Consulting Services Limited and Fraunhofer Institute for Systems and Innovation Research (ISI); 2019.
26.
Zurück zum Zitat Electric Power Research Institute (EPRI). U.S. national electrification assessment. Palo Alto: Electric Power Research Institute (EPRI); 2018. Electric Power Research Institute (EPRI). U.S. national electrification assessment. Palo Alto: Electric Power Research Institute (EPRI); 2018.
27.
Zurück zum Zitat •• Lechtenböhmer S, Nilsson LJ, Åhman M, Schneider C. Decarbonising the energy intensive basic materials industry through electrification – Implications for future EU electricity demand. Energy. 2016;115:1623–31 This paper establishes the magnitude of effort required to electrify the most energy-intensive industrial sectors, along with the associated barriers and challenges. CrossRef •• Lechtenböhmer S, Nilsson LJ, Åhman M, Schneider C. Decarbonising the energy intensive basic materials industry through electrification – Implications for future EU electricity demand. Energy. 2016;115:1623–31 This paper establishes the magnitude of effort required to electrify the most energy-intensive industrial sectors, along with the associated barriers and challenges. CrossRef
28.
Zurück zum Zitat Mai TT, Jadun P, Logan JS, McMillan CA, Muratori M, Steinberg DC, et al. Electrification futures study: scenarios of electric technology adoption and power consumption for the United States. Golden: National Renewable Energy Laboratory (NREL); 2018.CrossRef Mai TT, Jadun P, Logan JS, McMillan CA, Muratori M, Steinberg DC, et al. Electrification futures study: scenarios of electric technology adoption and power consumption for the United States. Golden: National Renewable Energy Laboratory (NREL); 2018.CrossRef
29.
Zurück zum Zitat Material Economics. Industrial Transformation 2050. 2019. Material Economics. Industrial Transformation 2050. 2019.
30.
Zurück zum Zitat Khanna NZ, Zhou N, Fridley D. China’s trajectories beyond efficiency: CO2 implications of maximizing electrification and renewable resources through 2050. In: ECEEE summer study. 2014. pp 69–79 Khanna NZ, Zhou N, Fridley D. China’s trajectories beyond efficiency: CO2 implications of maximizing electrification and renewable resources through 2050. In: ECEEE summer study. 2014. pp 69–79
31.
Zurück zum Zitat • Palm E, Nilsson LJ, Åhman M. Electricity-based plastics and their potential demand for electricity and carbon dioxide. J Clean Prod. 2016;129:548–55 This paper examines the additional challenges of addressing feedstock energy use under electrification and carbon dioxide emissions reductions. CrossRef • Palm E, Nilsson LJ, Åhman M. Electricity-based plastics and their potential demand for electricity and carbon dioxide. J Clean Prod. 2016;129:548–55 This paper examines the additional challenges of addressing feedstock energy use under electrification and carbon dioxide emissions reductions. CrossRef
32.
Zurück zum Zitat VoltaChem. Empowering the chemical industry - opportunities for electrification. 2016. VoltaChem. Empowering the chemical industry - opportunities for electrification. 2016.
34.
Zurück zum Zitat Bureau of International Recycling. World steel recycling in figures 2012 – 2016 steel scrap – a raw material for steelmaking. Brussels; 2017. Bureau of International Recycling. World steel recycling in figures 2012 – 2016 steel scrap – a raw material for steelmaking. Brussels; 2017.
35.
Zurück zum Zitat Allanore A. Features and challenges of molten oxide electrolytes for metal extraction. J Electrochem Soc. 2015;162:E13–22.CrossRef Allanore A. Features and challenges of molten oxide electrolytes for metal extraction. J Electrochem Soc. 2015;162:E13–22.CrossRef
36.
Zurück zum Zitat Allanore A, Yin L, Sadoway DR. A new anode material for oxygen evolution in molten oxide electrolysis. Nature. 2013;497:353–6.CrossRef Allanore A, Yin L, Sadoway DR. A new anode material for oxygen evolution in molten oxide electrolysis. Nature. 2013;497:353–6.CrossRef
37.
Zurück zum Zitat Wiencke J, Lavelaine H, Panteix P-J, Petitjean C, Rapin C. Electrolysis of iron in a molten oxide electrolyte. J Appl Electrochem. 2018;48:115–26.CrossRef Wiencke J, Lavelaine H, Panteix P-J, Petitjean C, Rapin C. Electrolysis of iron in a molten oxide electrolyte. J Appl Electrochem. 2018;48:115–26.CrossRef
39.
Zurück zum Zitat Lavelaine de Maubeuge H, Van der Laan S, Hita A, Olsen K, Serna M, Martin Haarberg G, Frade J. Iron production by electrochemical reduction of its oxide for high CO2 mitigation. European Union. 2016. Lavelaine de Maubeuge H, Van der Laan S, Hita A, Olsen K, Serna M, Martin Haarberg G, Frade J. Iron production by electrochemical reduction of its oxide for high CO2 mitigation. European Union. 2016.
40.
Zurück zum Zitat Reints R. Bill Gates-led venture capital fund invests in carbon-free steel manufacturing. Fortune Mag. 2019. Reints R. Bill Gates-led venture capital fund invests in carbon-free steel manufacturing. Fortune Mag. 2019.
41.
Zurück zum Zitat World Steel Institute. Steel statistical yearbook 2018. 2019. World Steel Institute. Steel statistical yearbook 2018. 2019.
42.
Zurück zum Zitat • Vogl V, Åhman M, Nilsson LJ. Assessment of hydrogen direct reduction for fossil-free steelmaking. J Clean Prod. 2018;203:736–45 The assessment provides concrete example of applying hydrogen for an application in the industrial sector and provides implication in terms of costs and energy requirement. This type of analysis is much needed for additional possible pathways and technologies to plan and develop the enabling economic and policy environment to spur industry electrification. CrossRef • Vogl V, Åhman M, Nilsson LJ. Assessment of hydrogen direct reduction for fossil-free steelmaking. J Clean Prod. 2018;203:736–45 The assessment provides concrete example of applying hydrogen for an application in the industrial sector and provides implication in terms of costs and energy requirement. This type of analysis is much needed for additional possible pathways and technologies to plan and develop the enabling economic and policy environment to spur industry electrification. CrossRef
43.
Zurück zum Zitat Sohn HY, Mohassab Y. Development of a novel flash ironmaking technology with greatly reduced energy consumption and CO2 emissions. J Sustain Metall. 2016;2:216–27.CrossRef Sohn HY, Mohassab Y. Development of a novel flash ironmaking technology with greatly reduced energy consumption and CO2 emissions. J Sustain Metall. 2016;2:216–27.CrossRef
45.
Zurück zum Zitat Birat J-P. Low-carbon alternative technologies in iron & steel. 2017. Birat J-P. Low-carbon alternative technologies in iron & steel. 2017.
46.
Zurück zum Zitat Hasanbeigi A, Arens M, Price L. Alternative emerging ironmaking technologies for energy-efficiency and carbon dioxide emissions reduction: a technical review. Renew Sust Energ Rev. 2014;33:645–58.CrossRef Hasanbeigi A, Arens M, Price L. Alternative emerging ironmaking technologies for energy-efficiency and carbon dioxide emissions reduction: a technical review. Renew Sust Energ Rev. 2014;33:645–58.CrossRef
47.
Zurück zum Zitat Farjana SH, Huda N, Mahmud MAP, Saidur R. Solar process heat in industrial systems – a global review. Renew Sust Energ Rev. 2018;82:2270–86.CrossRef Farjana SH, Huda N, Mahmud MAP, Saidur R. Solar process heat in industrial systems – a global review. Renew Sust Energ Rev. 2018;82:2270–86.CrossRef
48.
Zurück zum Zitat Sharma AK, Sharma C, Mullick SC, Kandpal TC. Solar industrial process heating: a review. Renew Sust Energ Rev. 2017;78:124–37.CrossRef Sharma AK, Sharma C, Mullick SC, Kandpal TC. Solar industrial process heating: a review. Renew Sust Energ Rev. 2017;78:124–37.CrossRef
49.
Zurück zum Zitat Weiss, Werner, Spörk-Dür M. Solar Heat Worldwide. 2019. Weiss, Werner, Spörk-Dür M. Solar Heat Worldwide. 2019.
50.
Zurück zum Zitat McMillan CA, Ruth M. Using facility-level emissions data to estimate the technical potential of alternative thermal sources to meet industrial heat demand. Appl Energy. 2019;239:1077–90.CrossRef McMillan CA, Ruth M. Using facility-level emissions data to estimate the technical potential of alternative thermal sources to meet industrial heat demand. Appl Energy. 2019;239:1077–90.CrossRef
51.
Zurück zum Zitat Yang C, Yeh S, Zakerinia S, Ramea K, McCollum D. Achieving California’s 80% greenhouse gas reduction target in 2050: technology, policy and scenario analysis using CA-TIMES energy economic systems model. Energy Policy. 2015;77:118–30.CrossRef Yang C, Yeh S, Zakerinia S, Ramea K, McCollum D. Achieving California’s 80% greenhouse gas reduction target in 2050: technology, policy and scenario analysis using CA-TIMES energy economic systems model. Energy Policy. 2015;77:118–30.CrossRef
52.
Zurück zum Zitat Forsberg C. Putting synergies into actions: integration of nuclear and renewables in competitive electric markets. Pathways to decarbonization an int. work. to explor. synerg. between nucl. renew. energy sources. 2016. Forsberg C. Putting synergies into actions: integration of nuclear and renewables in competitive electric markets. Pathways to decarbonization an int. work. to explor. synerg. between nucl. renew. energy sources. 2016.
53.
Zurück zum Zitat Collier U. Renewable heat policies: delivering clean heat solutions for the energy transition. Paris Collier U (2018) Renewable heat policies: delivering clean heat solutions for the energy transition. Paris. 2018. Collier U. Renewable heat policies: delivering clean heat solutions for the energy transition. Paris Collier U (2018) Renewable heat policies: delivering clean heat solutions for the energy transition. Paris. 2018.
Metadaten
Titel
Electrification of Industry: Potential, Challenges and Outlook
verfasst von
Max Wei
Colin A. McMillan
Stephane de la Rue du Can
Publikationsdatum
13.11.2019
Verlag
Springer International Publishing
Erschienen in
Current Sustainable/Renewable Energy Reports / Ausgabe 4/2019
Elektronische ISSN: 2196-3010
DOI
https://doi.org/10.1007/s40518-019-00136-1

Weitere Artikel der Ausgabe 4/2019

Current Sustainable/Renewable Energy Reports 4/2019 Zur Ausgabe

Electrification (J Logan, Section Editor)

Electric Company Investments for 21st Century Electrification

Deep Decarbonization: BECCS (P Patrizio and N Mac Dowell, Section Editors)

Challenges and Opportunities of Bioenergy With Carbon Capture and Storage (BECCS) for Communities