Skip to main content
Erschienen in: Current Sustainable/Renewable Energy Reports 3/2020

18.07.2020 | Invited Commentary

Recent Advancements in the Life Cycle Analysis of Lignocellulosic Biomass

verfasst von: Muhammad Bilal, Hafiz M. N. Iqbal

Erschienen in: Current Sustainable/Renewable Energy Reports | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose of Review

In context of progressive depletion of fossil fuel assets along with an accelerating rise in global energy consumption and greenhouse gas (GHG) emissions, energy production from bio-renewable and sustainable sources has gained great significance. Lignocellulosic biomass, abundantly available and inexpensive feedstock, provides incredible potential as raw materials for the large-scale production of biofuels.

Recent Findings

It is meaningful to estimate the environmental footprints from cradle-to-grave to determine the optimal biofuel strategies. Life cycle assessment (LCA) is an integrative approach incorporating the economic and ecological impacts in a production chain and has been widely adopted to a large number of renewable energy production systems. It provides a comprehensive insight into the interactions between the environment and anthropogenic activities and thus implementing successful strategic planning. Life cycle or cradle to grave assessment approach of lignocellulosic biomass briquettes holds significant importance to evaluate the influence of bioproduction processes.

Summary

This review briefly presents the significance of lignocellulosic biomass as a potentially attractive feedstock for biofuels production. Particular emphasis has been devoted to analyze the entire life cycle analysis of bioprocess, including different pre-treatment processes employed in biofuels production, that is necessary to achieve its practical implementation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fytili D, Zabaniotou A. Circular economy synergistic opportunities of decentralized thermochemical systems for bioenergy and biochar production fueled with agro-industrial wastes with environmental sustainability and social acceptance: a review. Curr Sustain/Renew Energy Rep. 2018;5(2):150–5. Fytili D, Zabaniotou A. Circular economy synergistic opportunities of decentralized thermochemical systems for bioenergy and biochar production fueled with agro-industrial wastes with environmental sustainability and social acceptance: a review. Curr Sustain/Renew Energy Rep. 2018;5(2):150–5.
2.
Zurück zum Zitat Bilal M, Asgher M, Iqbal HM, Hu H, Zhang X. Biotransformation of lignocellulosic materials into value-added products—a review. Int J Biol Macromol. 2017;98:447–58. Bilal M, Asgher M, Iqbal HM, Hu H, Zhang X. Biotransformation of lignocellulosic materials into value-added products—a review. Int J Biol Macromol. 2017;98:447–58.
3.
Zurück zum Zitat Bilal M, Iqbal HM, Hu H, Wang W, Zhang X. Metabolic engineering pathways for rare sugars biosynthesis, physiological functionalities, and applications—a review. Crit Rev Food Sci Nutr. 2018;58(16):2768–78. Bilal M, Iqbal HM, Hu H, Wang W, Zhang X. Metabolic engineering pathways for rare sugars biosynthesis, physiological functionalities, and applications—a review. Crit Rev Food Sci Nutr. 2018;58(16):2768–78.
4.••
Zurück zum Zitat Arevalo-Gallegos A, Ahmad Z, Asgher M, Parra-Saldivar R, Iqbal HM. Lignocellulose: a sustainable material to produce value-added products with a zero waste approach—a review. Int J Biol Macromol. 2017;99:308–18. A detailed review explaining the use of lignocellulose as a sustainable material to produce value-added products with a zero-waste approach. Arevalo-Gallegos A, Ahmad Z, Asgher M, Parra-Saldivar R, Iqbal HM. Lignocellulose: a sustainable material to produce value-added products with a zero waste approach—a review. Int J Biol Macromol. 2017;99:308–18. A detailed review explaining the use of lignocellulose as a sustainable material to produce value-added products with a zero-waste approach.
5.
Zurück zum Zitat Prasad S, Singh A, Jain N, Joshi HC. Ethanol production from sweet sorghum syrup for utilization as automotive fuel in India. Energy Fuel. 2007;21(4):2415–20. Prasad S, Singh A, Jain N, Joshi HC. Ethanol production from sweet sorghum syrup for utilization as automotive fuel in India. Energy Fuel. 2007;21(4):2415–20.
6.
Zurück zum Zitat Iqbal HM, Kyazze G, Keshavarz T. Advances in the valorization of lignocellulosic materials by biotechnology: an overview. BioResources. 2013;8(2):3157–76. Iqbal HM, Kyazze G, Keshavarz T. Advances in the valorization of lignocellulosic materials by biotechnology: an overview. BioResources. 2013;8(2):3157–76.
7.
Zurück zum Zitat Kim S, Dale BE. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy. 2004;26(4):361–75. Kim S, Dale BE. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy. 2004;26(4):361–75.
8.
Zurück zum Zitat Kumar A, Chandra R. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon. 2020;6(2):e03170. Kumar A, Chandra R. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon. 2020;6(2):e03170.
9.
Zurück zum Zitat Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, et al. Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci. 2011;108(47):E1195–203. Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, et al. Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci. 2011;108(47):E1195–203.
10.
Zurück zum Zitat Dimarogona M, Topakas E, Christakopoulos P. Cellulose degradation by oxidative enzymes. Comput Struct Biotechnol J. 2012;2(3):e201209015. Dimarogona M, Topakas E, Christakopoulos P. Cellulose degradation by oxidative enzymes. Comput Struct Biotechnol J. 2012;2(3):e201209015.
11.
Zurück zum Zitat Bugg TD, Ahmad M, Hardiman EM, Rahmanpour R. Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep. 2011;28(12):1883–96. Bugg TD, Ahmad M, Hardiman EM, Rahmanpour R. Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep. 2011;28(12):1883–96.
12.
Zurück zum Zitat Bilal M, Asgher M, Iqbal HM, Ramzan M. Enhanced bio-ethanol production from old newspapers waste through alkali and enzymatic delignification. Waste Biomass Valoriz. 2017;8(7):2271–81. Bilal M, Asgher M, Iqbal HM, Ramzan M. Enhanced bio-ethanol production from old newspapers waste through alkali and enzymatic delignification. Waste Biomass Valoriz. 2017;8(7):2271–81.
14.
Zurück zum Zitat Kadam AA, Kamatkar JD, Khandare RV, Jadhav JP, Govindwar SP. Solid-state fermentation: tool for bioremediation of adsorbed textile dyestuff on distillery industry waste-yeast biomass using isolated Bacillus cereus strain EBT1. Environ Sci Pollut Res. 2013;20(2):1009–20. Kadam AA, Kamatkar JD, Khandare RV, Jadhav JP, Govindwar SP. Solid-state fermentation: tool for bioremediation of adsorbed textile dyestuff on distillery industry waste-yeast biomass using isolated Bacillus cereus strain EBT1. Environ Sci Pollut Res. 2013;20(2):1009–20.
15.
Zurück zum Zitat Ravindran R, Jaiswal AK. A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: challenges and opportunities. Bioresour Technol. 2016;199:92–102. Ravindran R, Jaiswal AK. A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: challenges and opportunities. Bioresour Technol. 2016;199:92–102.
16.
Zurück zum Zitat Taha M, Foda M, Shahsavari E, Aburto-Medina A, Adetutu E, Ball A. Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Curr Opin Biotechnol. 2016;38:190–7. Taha M, Foda M, Shahsavari E, Aburto-Medina A, Adetutu E, Ball A. Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Curr Opin Biotechnol. 2016;38:190–7.
17.•
Zurück zum Zitat Bilal M, Wang Z, Cui J, Ferreira LF, Bharagava RN, Iqbal HM. Environmental impact of lignocellulosic wastes and their effective exploitation as smart carriers–A drive towards greener and eco-friendlier biocatalytic systems. Sci Total Environ. 2020;722:137903. Applied aspects of lignocellulosic wastes (materials), as smart carriers, are given with examples. Bilal M, Wang Z, Cui J, Ferreira LF, Bharagava RN, Iqbal HM. Environmental impact of lignocellulosic wastes and their effective exploitation as smart carriers–A drive towards greener and eco-friendlier biocatalytic systems. Sci Total Environ. 2020;722:137903. Applied aspects of lignocellulosic wastes (materials), as smart carriers, are given with examples.
18.
Zurück zum Zitat Kumar D, Murthy GS. Life cycle assessment of energy and GHG emissions during ethanol production from grass straws using various pretreatment processes. Int J Life Cycle Assess. 2012;17(4):388–401. Kumar D, Murthy GS. Life cycle assessment of energy and GHG emissions during ethanol production from grass straws using various pretreatment processes. Int J Life Cycle Assess. 2012;17(4):388–401.
19.
Zurück zum Zitat Melis E, Vincis A, Orrù PF. An overview of current models and approaches to biomass supply chain design and management. Curr Sustain/Renew Energy Rep. 2018;5(2):138–49. Melis E, Vincis A, Orrù PF. An overview of current models and approaches to biomass supply chain design and management. Curr Sustain/Renew Energy Rep. 2018;5(2):138–49.
20.
Zurück zum Zitat Martin EW, Chester MV, Vergara SE. Attributional and consequential life-cycle assessment in biofuels: a review of recent literature in the context of system boundaries. Curr Sustain/Renew Energy Rep. 2015;2(3):82–9. Martin EW, Chester MV, Vergara SE. Attributional and consequential life-cycle assessment in biofuels: a review of recent literature in the context of system boundaries. Curr Sustain/Renew Energy Rep. 2015;2(3):82–9.
21.
Zurück zum Zitat Schau EM, Fet AM. LCA studies of food products as background for environmental product declarations. Int J Life Cycle Assess. 2008;13(3):255–64. Schau EM, Fet AM. LCA studies of food products as background for environmental product declarations. Int J Life Cycle Assess. 2008;13(3):255–64.
22.
Zurück zum Zitat Finkbeiner M. From the 40s to the 70s—the future of LCA in the ISO 14000 family. Int J Life Cycle Assessment. 2013;18:1–4. Finkbeiner M. From the 40s to the 70s—the future of LCA in the ISO 14000 family. Int J Life Cycle Assessment. 2013;18:1–4.
23.
Zurück zum Zitat Akhtar N, Gupta K, Goyal D, Goyal A. Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. Environ Prog Sustain Energy. 2016;35(2):489–511. Akhtar N, Gupta K, Goyal D, Goyal A. Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. Environ Prog Sustain Energy. 2016;35(2):489–511.
25.
Zurück zum Zitat Lask J, Wagner M, Trindade LM, Lewandowski I. Life cycle assessment of ethanol production from miscanthus: a comparison of production pathways at two European sites. GCB Bioenergy. 2019;11(1):269–88. Lask J, Wagner M, Trindade LM, Lewandowski I. Life cycle assessment of ethanol production from miscanthus: a comparison of production pathways at two European sites. GCB Bioenergy. 2019;11(1):269–88.
26.
Zurück zum Zitat Asgher M, Ahmad Z, Iqbal HM. Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bio-ethanol production. Ind Crop Prod. 2013;44:488–95. Asgher M, Ahmad Z, Iqbal HM. Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bio-ethanol production. Ind Crop Prod. 2013;44:488–95.
27.
Zurück zum Zitat Asgher M, Bashir F, Iqbal HM. A comprehensive ligninolytic pre-treatment approach from lignocellulose green biotechnology to produce bio-ethanol. Chem Eng Res Des. 2014;92(8):1571–8. Asgher M, Bashir F, Iqbal HM. A comprehensive ligninolytic pre-treatment approach from lignocellulose green biotechnology to produce bio-ethanol. Chem Eng Res Des. 2014;92(8):1571–8.
28.••
Zurück zum Zitat Bilal M, Iqbal HM. Ligninolytic enzymes mediated ligninolysis: an untapped biocatalytic potential to deconstruct lignocellulosic molecules in a sustainable manner. Catal Lett. 2020;150:524–43. This work spotlighted the uniqueness of ligninolytic enzymes mediated ligninolysis to deconstruct lignocellulosic molecules in a sustainable manner. Bilal M, Iqbal HM. Ligninolytic enzymes mediated ligninolysis: an untapped biocatalytic potential to deconstruct lignocellulosic molecules in a sustainable manner. Catal Lett. 2020;150:524–43. This work spotlighted the uniqueness of ligninolytic enzymes mediated ligninolysis to deconstruct lignocellulosic molecules in a sustainable manner.
29.
Zurück zum Zitat Singhvi M, Gokhale D. Biomass to biodegradable polymer (PLA). RSC Adv. 2013;3(33):13558–68. Singhvi M, Gokhale D. Biomass to biodegradable polymer (PLA). RSC Adv. 2013;3(33):13558–68.
30.
Zurück zum Zitat Li X, Xia J, Zhu X, Bilal M, Tan Z, Shi H. Construction and characterization of bifunctional cellulases: caldicellulosiruptor-sourced endoglucanase, CBM, and exoglucanase for efficient degradation of lignocellulose. Biochem Eng J. 2019;151:107363. Li X, Xia J, Zhu X, Bilal M, Tan Z, Shi H. Construction and characterization of bifunctional cellulases: caldicellulosiruptor-sourced endoglucanase, CBM, and exoglucanase for efficient degradation of lignocellulose. Biochem Eng J. 2019;151:107363.
31.
Zurück zum Zitat Xia J, Yu Y, Chen H, Zhou J, Tan Z, He S, et al. Improved lignocellulose degradation efficiency by fusion of β-glucosidase, exoglucanase, and carbohydrate-binding module from Caldicellulosiruptor saccharolyticus. BioResources. 2019;14(3):6767–80. Xia J, Yu Y, Chen H, Zhou J, Tan Z, He S, et al. Improved lignocellulose degradation efficiency by fusion of β-glucosidase, exoglucanase, and carbohydrate-binding module from Caldicellulosiruptor saccharolyticus. BioResources. 2019;14(3):6767–80.
32.
Zurück zum Zitat Van Fan Y, Klemeš JJ, Perry S, Lee CT. Anaerobic digestion of lignocellulosic waste: environmental impact and economic assessment. J Environ Manag. 2019;231:352–63. Van Fan Y, Klemeš JJ, Perry S, Lee CT. Anaerobic digestion of lignocellulosic waste: environmental impact and economic assessment. J Environ Manag. 2019;231:352–63.
33.
Zurück zum Zitat Prasad A, Sotenko M, Blenkinsopp T, Coles SR. Life cycle assessment of lignocellulosic biomass pretreatment methods in biofuel production. Int J Life Cycle Assess. 2016;21(1):44–50. Prasad A, Sotenko M, Blenkinsopp T, Coles SR. Life cycle assessment of lignocellulosic biomass pretreatment methods in biofuel production. Int J Life Cycle Assess. 2016;21(1):44–50.
34.
Zurück zum Zitat Candido RG, Mori NR, Gonçalves AR. Sugarcane straw as feedstock for 2G ethanol: evaluation of pretreatments and enzymatic hydrolysis. Ind Crop Prod. 2019;142:111845. Candido RG, Mori NR, Gonçalves AR. Sugarcane straw as feedstock for 2G ethanol: evaluation of pretreatments and enzymatic hydrolysis. Ind Crop Prod. 2019;142:111845.
35.
Zurück zum Zitat Smullen E, Finnan J, Dowling D, Mulcahy P. The environmental performance of pretreatment technologies for the bioconversion of lignocellulosic biomass to ethanol. Renew Energy. 2019;142:527–34. Smullen E, Finnan J, Dowling D, Mulcahy P. The environmental performance of pretreatment technologies for the bioconversion of lignocellulosic biomass to ethanol. Renew Energy. 2019;142:527–34.
36.
Zurück zum Zitat Chuetor S, Champreda V, Laosiripojana N. Evaluation of combined semi-humid chemo-mechanical pretreatment of lignocellulosic biomass in energy efficiency and waste generation. Bioresour Technol. 2019;292:121966. Chuetor S, Champreda V, Laosiripojana N. Evaluation of combined semi-humid chemo-mechanical pretreatment of lignocellulosic biomass in energy efficiency and waste generation. Bioresour Technol. 2019;292:121966.
37.
Zurück zum Zitat Pan SY, Lin YJ, Snyder SW, Ma HW, Chiang PC. Development of low-carbon-driven bio-product technology using lignocellulosic substrates from agriculture: challenges and perspectives. Curr Sustain/Renew Energy Rep. 2015;2(4):145–54. Pan SY, Lin YJ, Snyder SW, Ma HW, Chiang PC. Development of low-carbon-driven bio-product technology using lignocellulosic substrates from agriculture: challenges and perspectives. Curr Sustain/Renew Energy Rep. 2015;2(4):145–54.
38.
Zurück zum Zitat Carrillo-Nieves D, Alanís MJ, de la Cruz QR, Ruiz HA, Iqbal HM, Parra-Saldívar R. Current status and future trends of bioethanol production from agro-industrial wastes in Mexico. Renew Sust Energ Rev. 2019;102:63–74. Carrillo-Nieves D, Alanís MJ, de la Cruz QR, Ruiz HA, Iqbal HM, Parra-Saldívar R. Current status and future trends of bioethanol production from agro-industrial wastes in Mexico. Renew Sust Energ Rev. 2019;102:63–74.
39.
Zurück zum Zitat Bilal M, Iqbal HM. Microbial peroxidases and their unique catalytic potentialities to degrade environmentally related pollutants. In Microbial Technology for Health and Environment 2020b; pp. 1-24. Springer, Singapore. Bilal M, Iqbal HM. Microbial peroxidases and their unique catalytic potentialities to degrade environmentally related pollutants. In Microbial Technology for Health and Environment 2020b; pp. 1-24. Springer, Singapore.
40.
Zurück zum Zitat Luo H, Zheng P, Bilal M, Xie F, Zeng Q, Zhu C, et al. Efficient bio-butanol production from lignocellulosic waste by elucidating the mechanisms of Clostridium acetobutylicum response to phenolic inhibitors. Sci Total Environ. 2020;710:136399. Luo H, Zheng P, Bilal M, Xie F, Zeng Q, Zhu C, et al. Efficient bio-butanol production from lignocellulosic waste by elucidating the mechanisms of Clostridium acetobutylicum response to phenolic inhibitors. Sci Total Environ. 2020;710:136399.
41.•
Zurück zum Zitat Kumar G, Dharmaraja J, Arvindnarayan S, Shoban S, Bakonyi P, Saratale GD, et al. A comprehensive review on thermochemical, biological, biochemical and hybrid conversion methods of bio-derived lignocellulosic molecules into renewable fuels. Fuel. 2019;251:352–67. This work reports on the bioconversion strategies and their exploitation for bio-derived lignocellulosic molecules into renewable fuels. Kumar G, Dharmaraja J, Arvindnarayan S, Shoban S, Bakonyi P, Saratale GD, et al. A comprehensive review on thermochemical, biological, biochemical and hybrid conversion methods of bio-derived lignocellulosic molecules into renewable fuels. Fuel. 2019;251:352–67. This work reports on the bioconversion strategies and their exploitation for bio-derived lignocellulosic molecules into renewable fuels.
42.
Zurück zum Zitat Saini JK, Saini R, Tewari L. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech. 2015;5(4):337–53. Saini JK, Saini R, Tewari L. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech. 2015;5(4):337–53.
43.
Zurück zum Zitat Marin FR, Martha GB Jr, Cassman KG, Grassini P. Prospects for increasing sugarcane and bioethanol production on existing crop area in Brazil. BioScience. 2016;66(4):307–16. Marin FR, Martha GB Jr, Cassman KG, Grassini P. Prospects for increasing sugarcane and bioethanol production on existing crop area in Brazil. BioScience. 2016;66(4):307–16.
44.
Zurück zum Zitat Lennartsson PR, Erlandsson P, Taherzadeh MJ. Integration of the first and second generation bioethanol processes and the importance of by-products. Bioresour Technol. 2014;165:3–8. Lennartsson PR, Erlandsson P, Taherzadeh MJ. Integration of the first and second generation bioethanol processes and the importance of by-products. Bioresour Technol. 2014;165:3–8.
46.
Zurück zum Zitat Bilal M, Iqbal HM, Hu H, Wang W, Zhang X. Metabolic engineering and enzyme-mediated processing: a biotechnological venture towards biofuel production–A review. Renew Sust Energ Rev. 2018;82:436–47. Bilal M, Iqbal HM, Hu H, Wang W, Zhang X. Metabolic engineering and enzyme-mediated processing: a biotechnological venture towards biofuel production–A review. Renew Sust Energ Rev. 2018;82:436–47.
47.••
Zurück zum Zitat Isikgor FH, Becer CR. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem. 2015;6(25):4497–559. A comprehensive insight in given on lignocellulosic biomass, as a sustainable platform, to generate bio-based chemicals and polymers of high interests. Isikgor FH, Becer CR. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem. 2015;6(25):4497–559. A comprehensive insight in given on lignocellulosic biomass, as a sustainable platform, to generate bio-based chemicals and polymers of high interests.
48.
Zurück zum Zitat Behera S, Singh R, Arora R, Sharma NK, Shukla M, Kumar S. Scope of algae as third generation biofuels. Front Bioeng Biotechnol. 2015;2:90. Behera S, Singh R, Arora R, Sharma NK, Shukla M, Kumar S. Scope of algae as third generation biofuels. Front Bioeng Biotechnol. 2015;2:90.
49.
Zurück zum Zitat Aro EM. From first generation biofuels to advanced solar biofuels. Ambio. 2016;45(1):24–31. Aro EM. From first generation biofuels to advanced solar biofuels. Ambio. 2016;45(1):24–31.
50.
Zurück zum Zitat Li-Beisson Y, Peltier G. Third-generation biofuels: current and future research on microalgal lipid biotechnology. OCL. 2013;20(6):D606. Li-Beisson Y, Peltier G. Third-generation biofuels: current and future research on microalgal lipid biotechnology. OCL. 2013;20(6):D606.
51.
Zurück zum Zitat Dutta K, Daverey A, Lin JG. Evolution retrospective for alternative fuels: First to fourth generation. Renew Energy. 2014;69:114–22. Dutta K, Daverey A, Lin JG. Evolution retrospective for alternative fuels: First to fourth generation. Renew Energy. 2014;69:114–22.
52.
Zurück zum Zitat Sander K, Murthy GS. Life cycle analysis of algae biodiesel. Int J Life Cycle Assess. 2010;15(7):704–14. Sander K, Murthy GS. Life cycle analysis of algae biodiesel. Int J Life Cycle Assess. 2010;15(7):704–14.
53.
Zurück zum Zitat Solmaz S, Okaygün M. A novel technology for dewatering and pasteurization of digested water sewage sludge utilizing concentrated solar energy. 16th International Conference on Clean Energy (ICCE-2018), 9-11 May 2018, Famagusta, N. Cyprus. Solmaz S, Okaygün M. A novel technology for dewatering and pasteurization of digested water sewage sludge utilizing concentrated solar energy. 16th International Conference on Clean Energy (ICCE-2018), 9-11 May 2018, Famagusta, N. Cyprus.
54.
Zurück zum Zitat Shi R, Handler RM, Shonnard DR. Life cycle assessment of novel technologies for algae harvesting and oil extraction in the renewable diesel pathway. Algal Res. 2019;37:248–59. Shi R, Handler RM, Shonnard DR. Life cycle assessment of novel technologies for algae harvesting and oil extraction in the renewable diesel pathway. Algal Res. 2019;37:248–59.
55.
Zurück zum Zitat Wu W, Lei YC, Chang JS. Life cycle assessment of upgraded microalgae-to-biofuel chains. Bioresour Technol. 2019;288:121492. Wu W, Lei YC, Chang JS. Life cycle assessment of upgraded microalgae-to-biofuel chains. Bioresour Technol. 2019;288:121492.
56.
Zurück zum Zitat Shokravi Z, Shokravi H, Aziz MM, Shokravi H. 12 The fourth-generation biofuel: a systematic review on nearly two decades of research from 2008 to 2019. InFoss. Free fuels trends renew. Energy 2019. Taylor and Francis. Shokravi Z, Shokravi H, Aziz MM, Shokravi H. 12 The fourth-generation biofuel: a systematic review on nearly two decades of research from 2008 to 2019. InFoss. Free fuels trends renew. Energy 2019. Taylor and Francis.
57.
Zurück zum Zitat Bilal M, Nawaz MZ, Iqbal H, Hou J, Mahboob S, Al-Ghanim KA, et al. Engineering ligninolytic consortium for bioconversion of lignocelluloses to ethanol and chemicals. Protein Pept Lett. 2018;25(2):108–19. Bilal M, Nawaz MZ, Iqbal H, Hou J, Mahboob S, Al-Ghanim KA, et al. Engineering ligninolytic consortium for bioconversion of lignocelluloses to ethanol and chemicals. Protein Pept Lett. 2018;25(2):108–19.
58.
Zurück zum Zitat Bilal M, Iqbal HM. Sustainable bioconversion of food waste into high-value products by immobilized enzymes to meet bio-economy challenges and opportunities–A review. Food Res Int. 2019;123:226–40. Bilal M, Iqbal HM. Sustainable bioconversion of food waste into high-value products by immobilized enzymes to meet bio-economy challenges and opportunities–A review. Food Res Int. 2019;123:226–40.
59.
Zurück zum Zitat Prasad RK, Chatterjee S, Mazumder PB, Gupta SK, Sharma S, Vairale MG, et al. Bioethanol production from waste lignocelluloses: a review on microbial degradation potential. Chemosphere. 2019;231:588–606. Prasad RK, Chatterjee S, Mazumder PB, Gupta SK, Sharma S, Vairale MG, et al. Bioethanol production from waste lignocelluloses: a review on microbial degradation potential. Chemosphere. 2019;231:588–606.
Metadaten
Titel
Recent Advancements in the Life Cycle Analysis of Lignocellulosic Biomass
verfasst von
Muhammad Bilal
Hafiz M. N. Iqbal
Publikationsdatum
18.07.2020
Verlag
Springer International Publishing
Erschienen in
Current Sustainable/Renewable Energy Reports / Ausgabe 3/2020
Elektronische ISSN: 2196-3010
DOI
https://doi.org/10.1007/s40518-020-00153-5

Weitere Artikel der Ausgabe 3/2020

Current Sustainable/Renewable Energy Reports 3/2020 Zur Ausgabe

Bioconversion (SK Brar and G Kaur, Section Editors)

Technological Challenges in Enzymatically Produced Functional Foods

Bioconversion (SK Brar and G Kaur, Section Editors)

Industrial Biocatalysis: an Insight into Trends and Future Directions

Regional Renewable Energy (M Negrete-Pincetic, Section Editor)

Challenges in the Management of Hydroelectric Generation in Power System Operations