Skip to main content
Erschienen in: Shape Memory and Superelasticity 4/2022

06.12.2022 | TECHNICAL ARTICLE

Extending Fatigue Life of NiTiHf Shape Memory Alloy Wires Through Rapid Thermal Annealing

verfasst von: Faith Gantz, Michael T. Wall, Marcus L. Young, Drew J. Forbes

Erschienen in: Shape Memory and Superelasticity | Ausgabe 4/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Two challenges facing high temperature shape memory alloys (HTSMAs) involve extending the actuation fatigue life and maximizing the actuator response. Thus, the focus of this study was to determine alternative processing parameters to form the optimal microstructure for actuation applications involving NiTiHf HTSMA wires. In this study, the effect of rapid thermal annealing (RTA) on the thermo-mechanical properties of Ni-lean Ni49.8Ti40.2Hf10 and Ni-rich Ni50.3Ti29.7Hf20 HTSMA wires was investigated. Both alloys were produced from a large-scale ingot, homogenized, then extruded, and subsequently cold-drawn to wire. In the final pass, the wires were rapid thermal annealed in an Ar environment for short times at various temperatures. The samples were characterized using differential scanning calorimetry, scanning electron microscopy equipped with energy dispersive spectroscopy, transmission electron microscopy, and thermo-mechanical testing. RTA was shown to be a time efficient technique to control grain size and oxidation of small diameter Ni-lean and Ni-rich NiTiHf HTSMA wires. The resulting grain size proved to be critical to controlling the actuation fatigue life and actuation strain response; however, an inverse relationship was found between fatigue life and actuation strain, i.e., longer fatigue life also meant lower actuation strain.
Literatur
1.
Zurück zum Zitat Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55(5):257–315CrossRef Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55(5):257–315CrossRef
2.
Zurück zum Zitat Caltagirone PE et al (2021) Shape memory alloy-enabled expandable space habitat—case studies for second CASMART student design challenge. Shape Memory Superelasticity 7:1–24CrossRef Caltagirone PE et al (2021) Shape memory alloy-enabled expandable space habitat—case studies for second CASMART student design challenge. Shape Memory Superelasticity 7:1–24CrossRef
7.
Zurück zum Zitat Patil D, Song G (2017) A review of shape memory material’s applications in the offshore oil and gas industry. Smart Mater Struct 26(9):093002CrossRef Patil D, Song G (2017) A review of shape memory material’s applications in the offshore oil and gas industry. Smart Mater Struct 26(9):093002CrossRef
8.
Zurück zum Zitat Benafan O et al (2014) Shape memory alloy actuator design: CASMART collaborative best practices and case studies. Int J Mech Mater Des 10(1):1–42CrossRef Benafan O et al (2014) Shape memory alloy actuator design: CASMART collaborative best practices and case studies. Int J Mech Mater Des 10(1):1–42CrossRef
9.
Zurück zum Zitat Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 1980–2015(56):1078–1113CrossRef Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 1980–2015(56):1078–1113CrossRef
10.
Zurück zum Zitat Chen J, Lei L, Fang G (2021) Elastocaloric cooling of shape memory alloys: a review. Mater Today Commun, p. 102706. Chen J, Lei L, Fang G (2021) Elastocaloric cooling of shape memory alloys: a review. Mater Today Commun, p. 102706.
11.
Zurück zum Zitat Chaudhari R, Vora JJ, Parikh DM (2021) A review on applications of nitinol shape memory alloy. In Recent advances in mechanical infrastructure. Springer, pp. 123–132. Chaudhari R, Vora JJ, Parikh DM (2021) A review on applications of nitinol shape memory alloy. In Recent advances in mechanical infrastructure. Springer, pp. 123–132.
12.
Zurück zum Zitat Duerig TW, Melton KN, Stöckel D (2013) Engineering aspects of shape memory alloys. Butterworth-Heinemann Duerig TW, Melton KN, Stöckel D (2013) Engineering aspects of shape memory alloys. Butterworth-Heinemann
13.
Zurück zum Zitat Antonucci V, Martone A (2021) Phenomenology of shape memory alloys. Shape memory alloy engineering. Elsevier, pp 115–139CrossRef Antonucci V, Martone A (2021) Phenomenology of shape memory alloys. Shape memory alloy engineering. Elsevier, pp 115–139CrossRef
14.
Zurück zum Zitat Karakoc O et al (2019) Role of microstructure on the actuation fatigue performance of Ni-Rich NiTiHf high temperature shape memory alloys. Acta Mater 175:107–120CrossRef Karakoc O et al (2019) Role of microstructure on the actuation fatigue performance of Ni-Rich NiTiHf high temperature shape memory alloys. Acta Mater 175:107–120CrossRef
15.
Zurück zum Zitat Baxevanis T, Lagoudas DC (2015) Fracture mechanics of shape memory alloys: review and perspectives. Int J Fract 191(1–2):191–213CrossRef Baxevanis T, Lagoudas DC (2015) Fracture mechanics of shape memory alloys: review and perspectives. Int J Fract 191(1–2):191–213CrossRef
16.
Zurück zum Zitat Haghgouyan B, Hayrettin C, Baxevanis T, Karaman I, Lagoudas DC (2019) Fracture toughness of NiTi–towards establishing standard test methods for phase transforming materials. Acta Mater 162:226–238CrossRef Haghgouyan B, Hayrettin C, Baxevanis T, Karaman I, Lagoudas DC (2019) Fracture toughness of NiTi–towards establishing standard test methods for phase transforming materials. Acta Mater 162:226–238CrossRef
17.
Zurück zum Zitat Karakoc O, Demblon A, Wheeler RW, Lagoudas DC, Karaman I (2019) Effects of testing parameters on the fatigue performance NiTiHf high temperature shape memory alloys. In AIAA Scitech 2019 Forum, p. 416. Karakoc O, Demblon A, Wheeler RW, Lagoudas DC, Karaman I (2019) Effects of testing parameters on the fatigue performance NiTiHf high temperature shape memory alloys. In AIAA Scitech 2019 Forum, p. 416.
18.
Zurück zum Zitat Eggeler G, Hornbogen E, Yawny A, Heckmann A, Wagner M (2004) Structural and functional fatigue of NiTi shape memory alloys. Mater Sci Eng, A 378(1–2):24–33CrossRef Eggeler G, Hornbogen E, Yawny A, Heckmann A, Wagner M (2004) Structural and functional fatigue of NiTi shape memory alloys. Mater Sci Eng, A 378(1–2):24–33CrossRef
19.
Zurück zum Zitat Frenzel J (2020) On the importance of structural and functional fatigue in shape memory technology. Shape Memory Superelasticity 6(2):213–222CrossRef Frenzel J (2020) On the importance of structural and functional fatigue in shape memory technology. Shape Memory Superelasticity 6(2):213–222CrossRef
20.
Zurück zum Zitat Rahim M et al (2013) Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys. Acta Mater 61(10):3667–3686CrossRef Rahim M et al (2013) Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys. Acta Mater 61(10):3667–3686CrossRef
21.
Zurück zum Zitat Carl M, Zhang B, Young ML (2016) Texture and strain measurements from bending of NiTi shape memory alloy wires. Shape Memory Superelasticity 2(3):254–263CrossRef Carl M, Zhang B, Young ML (2016) Texture and strain measurements from bending of NiTi shape memory alloy wires. Shape Memory Superelasticity 2(3):254–263CrossRef
22.
Zurück zum Zitat Xu L (2019) Finite strain constitutive modeling of shape memory alloys incorporating transformation-induced plasticity under cyclic loading, Doctoral. Texas A&M University Xu L (2019) Finite strain constitutive modeling of shape memory alloys incorporating transformation-induced plasticity under cyclic loading, Doctoral. Texas A&M University
23.
Zurück zum Zitat Hasan MM, Baxevanis T (2019) Actuation fatigue life prediction of notched shape memory alloy members. J Appl Mech, 86(6) Hasan MM, Baxevanis T (2019) Actuation fatigue life prediction of notched shape memory alloy members. J Appl Mech, 86(6)
24.
Zurück zum Zitat Haghgouyan B, Young B, Picak S, Baxevanis T, Karaman I, Lagoudas DC (2021) A unified description of mechanical and actuation fatigue crack growth in shape memory alloys. Acta Mater 217:117155CrossRef Haghgouyan B, Young B, Picak S, Baxevanis T, Karaman I, Lagoudas DC (2021) A unified description of mechanical and actuation fatigue crack growth in shape memory alloys. Acta Mater 217:117155CrossRef
26.
Zurück zum Zitat Young ML, et al. (2019) Effects of thermo-mechanical processing on precipitate evolution in equiatomic and Ni-lean NiTiHf high temperature shape memory alloys. In AIAA Scitech 2019 Forum, p. 1196. Young ML, et al. (2019) Effects of thermo-mechanical processing on precipitate evolution in equiatomic and Ni-lean NiTiHf high temperature shape memory alloys. In AIAA Scitech 2019 Forum, p. 1196.
27.
Zurück zum Zitat Perkins J (1973) Lattice transformations related to unique mechanical effects. Metall Trans 4(12):2709–2721CrossRef Perkins J (1973) Lattice transformations related to unique mechanical effects. Metall Trans 4(12):2709–2721CrossRef
28.
Zurück zum Zitat Sun Q, Aslan A, Li M, Chen M (2014) Effects of grain size on phase transition behavior of nanocrystalline shape memory alloys. Sci China Technol Sci 57(4):671–679CrossRef Sun Q, Aslan A, Li M, Chen M (2014) Effects of grain size on phase transition behavior of nanocrystalline shape memory alloys. Sci China Technol Sci 57(4):671–679CrossRef
29.
Zurück zum Zitat Mikula J, Quek SS, Joshi SP, Wu DT, Ahluwalia R (2018) The role of bimodal grain size distribution in nanocrystalline shape memory alloys. Smart Mater Struct 27(10):105004CrossRef Mikula J, Quek SS, Joshi SP, Wu DT, Ahluwalia R (2018) The role of bimodal grain size distribution in nanocrystalline shape memory alloys. Smart Mater Struct 27(10):105004CrossRef
30.
Zurück zum Zitat Ley NA, Smith J, Wheeler RW, Young ML (2019) Effects of thermo-mechanical processing on precipitate evolution in Ni-rich high temperature shape memory alloys. Materialia (Oxf) 8:100496CrossRef Ley NA, Smith J, Wheeler RW, Young ML (2019) Effects of thermo-mechanical processing on precipitate evolution in Ni-rich high temperature shape memory alloys. Materialia (Oxf) 8:100496CrossRef
34.
Zurück zum Zitat Santamarta R et al (2013) TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni–Ti–Hf and Ni–Ti–Zr shape memory alloys. Acta Mater 61(16):6191–6206CrossRef Santamarta R et al (2013) TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni–Ti–Hf and Ni–Ti–Zr shape memory alloys. Acta Mater 61(16):6191–6206CrossRef
35.
Zurück zum Zitat Acar E (2014) Precipitation, orientation and composition effects on the shape memory properties of high. Acar E (2014) Precipitation, orientation and composition effects on the shape memory properties of high.
38.
Zurück zum Zitat la Roca P, Isola L, Vermaut P, Malarría J (2017) Relationship between grain size and thermal hysteresis of martensitic transformations in Cu-based shape memory alloys. Scripta Mater 135:5–9CrossRef la Roca P, Isola L, Vermaut P, Malarría J (2017) Relationship between grain size and thermal hysteresis of martensitic transformations in Cu-based shape memory alloys. Scripta Mater 135:5–9CrossRef
39.
Zurück zum Zitat Chluba C et al (2016) Effect of crystallographic compatibility and grain size on the functional fatigue of sputtered TiNiCuCo thin films. Phil Trans R Soc A 374(2074):20150311CrossRef Chluba C et al (2016) Effect of crystallographic compatibility and grain size on the functional fatigue of sputtered TiNiCuCo thin films. Phil Trans R Soc A 374(2074):20150311CrossRef
40.
Zurück zum Zitat Chen J, Yin H, Sun Q (2020) Effects of grain size on fatigue crack growth behaviors of nanocrystalline superelastic NiTi shape memory alloys. Acta Mater 195:141–150CrossRef Chen J, Yin H, Sun Q (2020) Effects of grain size on fatigue crack growth behaviors of nanocrystalline superelastic NiTi shape memory alloys. Acta Mater 195:141–150CrossRef
41.
Zurück zum Zitat Ikai Y, Murakami K, Mishima K (1982) Stability of the shape memory effect-effect of grain size refinement. Le J de Physique Colloques 43(C4):C4-785CrossRef Ikai Y, Murakami K, Mishima K (1982) Stability of the shape memory effect-effect of grain size refinement. Le J de Physique Colloques 43(C4):C4-785CrossRef
43.
Zurück zum Zitat Gantz F et al (2021) Processing, preaging, and aging of NiTi-20 at.% Hf high-temperature shape memory alloy from laboratory to industrial scale. Shape Memory Superelasticity 7(3):447–457CrossRef Gantz F et al (2021) Processing, preaging, and aging of NiTi-20 at.% Hf high-temperature shape memory alloy from laboratory to industrial scale. Shape Memory Superelasticity 7(3):447–457CrossRef
44.
Zurück zum Zitat Ley NA, Wheeler RW, Benafan O, Young ML (2019) Characterization of thermomechanically processed high-temperature Ni-lean NiTi–20 at.% Hf shape memory wires. Shape Memory Superelasticity 5(4):476–485CrossRef Ley NA, Wheeler RW, Benafan O, Young ML (2019) Characterization of thermomechanically processed high-temperature Ni-lean NiTi–20 at.% Hf shape memory wires. Shape Memory Superelasticity 5(4):476–485CrossRef
45.
Zurück zum Zitat Abbaschian R, Reed-Hill RE (2009) Physical metallurgy principles-SI version. Cengage Learning Abbaschian R, Reed-Hill RE (2009) Physical metallurgy principles-SI version. Cengage Learning
46.
Zurück zum Zitat Wang X, Bellouard Y, Vlassak JJ (2005) Laser annealing of amorphous NiTi shape memory alloy thin films to locally induce shape memory properties. Acta Mater 53(18):4955–4961CrossRef Wang X, Bellouard Y, Vlassak JJ (2005) Laser annealing of amorphous NiTi shape memory alloy thin films to locally induce shape memory properties. Acta Mater 53(18):4955–4961CrossRef
47.
Zurück zum Zitat Bellouard Y, Lehnert T, Bidaux J-E, Sidler T, Clavel R, Gotthardt R (1999) Local annealing of complex mechanical devices: a new approach for developing monolithic micro-devices. Mater Sci Eng, A 273:795–798CrossRef Bellouard Y, Lehnert T, Bidaux J-E, Sidler T, Clavel R, Gotthardt R (1999) Local annealing of complex mechanical devices: a new approach for developing monolithic micro-devices. Mater Sci Eng, A 273:795–798CrossRef
48.
Zurück zum Zitat Knick CR, Smith GL, Morris CJ, Bruck HA (2019) Rapid and low power laser actuation of sputter-deposited NiTi shape memory alloy (SMA) MEMS thermal bimorph actuators. Sens Actuat A 291:48–57CrossRef Knick CR, Smith GL, Morris CJ, Bruck HA (2019) Rapid and low power laser actuation of sputter-deposited NiTi shape memory alloy (SMA) MEMS thermal bimorph actuators. Sens Actuat A 291:48–57CrossRef
49.
Zurück zum Zitat Kosiba K, Pauly S (2017) Inductive flash-annealing of bulk metallic glasses. Sci Rep 7(1):1–11CrossRef Kosiba K, Pauly S (2017) Inductive flash-annealing of bulk metallic glasses. Sci Rep 7(1):1–11CrossRef
50.
Zurück zum Zitat Agarwal A, et al. (1998) Ultra-shallow junctions and the effect of ramp-up rate during spike anneals in lamp-based and hot-walled RTP systems. In 1998 International Conference on Ion Implantation Technology. Proceedings (Cat. No. 98EX144), vol. 1, pp. 22–25. Agarwal A, et al. (1998) Ultra-shallow junctions and the effect of ramp-up rate during spike anneals in lamp-based and hot-walled RTP systems. In 1998 International Conference on Ion Implantation Technology. Proceedings (Cat. No. 98EX144), vol. 1, pp. 22–25.
51.
Zurück zum Zitat Yoo WS, Kang K (2005) Electrical activation of ultra-shallow B and BF2 implanted silicon by flash anneal. Nucl Instrum Methods Phys Res, Sect B 237(1–2):12–17CrossRef Yoo WS, Kang K (2005) Electrical activation of ultra-shallow B and BF2 implanted silicon by flash anneal. Nucl Instrum Methods Phys Res, Sect B 237(1–2):12–17CrossRef
52.
Zurück zum Zitat Hou H, Hamilton RF, Horn MW (2016) Crystallization of nanoscale NiTi alloy thin films using rapid thermal annealing. J Vacuum Sci Technol B, Nanotechnol and Microelectr 34(6):0601CrossRef Hou H, Hamilton RF, Horn MW (2016) Crystallization of nanoscale NiTi alloy thin films using rapid thermal annealing. J Vacuum Sci Technol B, Nanotechnol and Microelectr 34(6):0601CrossRef
55.
Zurück zum Zitat Motemani Y, Tan MJ, White TJ, Huang WM (2011) Rapid thermal annealing of Ti-rich TiNi thin films: a new approach to fabricate patterned shape memory thin films. Mater Des 32(2):688–695CrossRef Motemani Y, Tan MJ, White TJ, Huang WM (2011) Rapid thermal annealing of Ti-rich TiNi thin films: a new approach to fabricate patterned shape memory thin films. Mater Des 32(2):688–695CrossRef
57.
Zurück zum Zitat Khaleghi F, Khalil-Allafi J, Abbasi-Chianeh V, Noori S (2013) Effect of short-time annealing treatment on the superelastic behavior of cold drawn Ni-rich NiTi shape memory wires. J Alloys Compd 554:32–38CrossRef Khaleghi F, Khalil-Allafi J, Abbasi-Chianeh V, Noori S (2013) Effect of short-time annealing treatment on the superelastic behavior of cold drawn Ni-rich NiTi shape memory wires. J Alloys Compd 554:32–38CrossRef
61.
Zurück zum Zitat ASTM F2004–05 (2010) Standard test method for transformation temperature of nickel-titanium alloys by thermal analysis. www.astm.org ASTM F2004–05 (2010) Standard test method for transformation temperature of nickel-titanium alloys by thermal analysis. www.​astm.​org
62.
Zurück zum Zitat Phillips FR, Wheeler RW, Geltmacher AB, Lagoudas DC (2019) Evolution of internal damage during actuation fatigue in shape memory alloys. Int J Fatigue 124:315–327CrossRef Phillips FR, Wheeler RW, Geltmacher AB, Lagoudas DC (2019) Evolution of internal damage during actuation fatigue in shape memory alloys. Int J Fatigue 124:315–327CrossRef
63.
Zurück zum Zitat Lagoudas DC, Miller DA, Rong L, Kumar PK (2009) Thermomechanical fatigue of shape memory alloys. Smart Mater Struct 18(8):085021CrossRef Lagoudas DC, Miller DA, Rong L, Kumar PK (2009) Thermomechanical fatigue of shape memory alloys. Smart Mater Struct 18(8):085021CrossRef
64.
Zurück zum Zitat Birk T, Biswas S, Frenzel J, Eggeler G (2016) Twinning-induced elasticity in NiTi shape memory alloys. Shape Memory Superelasticity 2(2):145–159CrossRef Birk T, Biswas S, Frenzel J, Eggeler G (2016) Twinning-induced elasticity in NiTi shape memory alloys. Shape Memory Superelasticity 2(2):145–159CrossRef
65.
Zurück zum Zitat Wheeler RW, Smith J, Ley NA, Giri A, Young ML (2018) Processing-induced strain glass states in a Ni49. 5Ti50. 5 shape memory alloy. Appl Phys Lett 113(13):131901CrossRef Wheeler RW, Smith J, Ley NA, Giri A, Young ML (2018) Processing-induced strain glass states in a Ni49. 5Ti50. 5 shape memory alloy. Appl Phys Lett 113(13):131901CrossRef
68.
Zurück zum Zitat Ahadi A, Sun Q (2015) Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction. Acta Mater 90:272–281CrossRef Ahadi A, Sun Q (2015) Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction. Acta Mater 90:272–281CrossRef
69.
Zurück zum Zitat Ahadi A, Sun Q (2016) Grain size dependence of fracture toughness and crack-growth resistance of superelastic NiTi. Scripta Mater 113:171–175CrossRef Ahadi A, Sun Q (2016) Grain size dependence of fracture toughness and crack-growth resistance of superelastic NiTi. Scripta Mater 113:171–175CrossRef
70.
Zurück zum Zitat Yin H, He Y, Moumni Z, Sun Q (2016) Effects of grain size on tensile fatigue life of nanostructured NiTi shape memory alloy. Int J Fatigue 88:166–177CrossRef Yin H, He Y, Moumni Z, Sun Q (2016) Effects of grain size on tensile fatigue life of nanostructured NiTi shape memory alloy. Int J Fatigue 88:166–177CrossRef
71.
Zurück zum Zitat Chen Y, Schuh CA (2011) Size effects in shape memory alloy microwires. Acta Mater 59(2):537–553CrossRef Chen Y, Schuh CA (2011) Size effects in shape memory alloy microwires. Acta Mater 59(2):537–553CrossRef
72.
Zurück zum Zitat Sun QP, He YJ (2008) A multiscale continuum model of the grain-size dependence of the stress hysteresis in shape memory alloy polycrystals. Int J Solids Struct 45(13):3868–3896CrossRef Sun QP, He YJ (2008) A multiscale continuum model of the grain-size dependence of the stress hysteresis in shape memory alloy polycrystals. Int J Solids Struct 45(13):3868–3896CrossRef
73.
Zurück zum Zitat Zhang B (2015) Synchrotron radiation X-ray diffraction of nickel-titanium shape memory alloy wires during mechanical deformation. University of North Texas, Denton Zhang B (2015) Synchrotron radiation X-ray diffraction of nickel-titanium shape memory alloy wires during mechanical deformation. University of North Texas, Denton
74.
77.
Zurück zum Zitat Jiang S, Ming T, Zhao Y, Li HU, Zhang Y, Liang Y (2014) Crystallization of amorphous NiTi shape memory alloy fabricated by severe plastic deformation. Trans Nonferrous Metals Soc China 24(6):1758–1765CrossRef Jiang S, Ming T, Zhao Y, Li HU, Zhang Y, Liang Y (2014) Crystallization of amorphous NiTi shape memory alloy fabricated by severe plastic deformation. Trans Nonferrous Metals Soc China 24(6):1758–1765CrossRef
79.
Zurück zum Zitat Yu C, Kang G, Kan Q (2018) An equivalent local constitutive model for grain size dependent deformation of NiTi polycrystalline shape memory alloys. Int J Mech Sci 138:34–41CrossRef Yu C, Kang G, Kan Q (2018) An equivalent local constitutive model for grain size dependent deformation of NiTi polycrystalline shape memory alloys. Int J Mech Sci 138:34–41CrossRef
80.
Zurück zum Zitat Gall K, Tyber J, Wilkesanders G, Robertson SW, Ritchie RO, Maier HJ (2008) Effect of microstructure on the fatigue of hot-rolled and cold-drawn NiTi shape memory alloys. Mater Sci Eng, A 486(1–2):389–403CrossRef Gall K, Tyber J, Wilkesanders G, Robertson SW, Ritchie RO, Maier HJ (2008) Effect of microstructure on the fatigue of hot-rolled and cold-drawn NiTi shape memory alloys. Mater Sci Eng, A 486(1–2):389–403CrossRef
81.
Zurück zum Zitat Gu H, Bumke L, Chluba C, Quandt E, James RD (2018) Phase engineering and supercompatibility of shape memory alloys. Mater Today 21(3):265–277CrossRef Gu H, Bumke L, Chluba C, Quandt E, James RD (2018) Phase engineering and supercompatibility of shape memory alloys. Mater Today 21(3):265–277CrossRef
83.
Zurück zum Zitat Tadayyon G, Mazinani M, Guo Y, Zebarjad SM, Tofail SAM, Biggs MJ (2016) The effect of annealing on the mechanical properties and microstructural evolution of Ti-rich NiTi shape memory alloy. Mater Sci Eng, A 662:564–577CrossRef Tadayyon G, Mazinani M, Guo Y, Zebarjad SM, Tofail SAM, Biggs MJ (2016) The effect of annealing on the mechanical properties and microstructural evolution of Ti-rich NiTi shape memory alloy. Mater Sci Eng, A 662:564–577CrossRef
84.
Zurück zum Zitat Delville R, Kasinathan S, Zhang Z, van Humbeeck J, James RD, Schryvers D (2010) Transmission electron microscopy study of phase compatibility in low hysteresis shape memory alloys. Phil Mag 90(1–4):177–195CrossRef Delville R, Kasinathan S, Zhang Z, van Humbeeck J, James RD, Schryvers D (2010) Transmission electron microscopy study of phase compatibility in low hysteresis shape memory alloys. Phil Mag 90(1–4):177–195CrossRef
85.
Zurück zum Zitat Gollerthan S, Young ML, Baruj A, Frenzel J, Schmahl WW, Eggeler G (2009) Fracture mechanics and microstructure in NiTi shape memory alloys. Acta Mater 57(4):1015–1025CrossRef Gollerthan S, Young ML, Baruj A, Frenzel J, Schmahl WW, Eggeler G (2009) Fracture mechanics and microstructure in NiTi shape memory alloys. Acta Mater 57(4):1015–1025CrossRef
86.
Zurück zum Zitat Jape S, Baxevanis T, Lagoudas DC (2018) On the fracture toughness and stable crack growth in shape memory alloy actuators in the presence of transformation-induced plasticity. Int J Fract 209(1):117–130CrossRef Jape S, Baxevanis T, Lagoudas DC (2018) On the fracture toughness and stable crack growth in shape memory alloy actuators in the presence of transformation-induced plasticity. Int J Fract 209(1):117–130CrossRef
87.
Zurück zum Zitat Gollerthan S, Young ML, Neuking K, Ramamurty U, Eggeler G (2009) Direct physical evidence for the back-transformation of stress-induced martensite in the vicinity of cracks in pseudoelastic NiTi shape memory alloys. Acta Mater 57(19):5892–5897CrossRef Gollerthan S, Young ML, Neuking K, Ramamurty U, Eggeler G (2009) Direct physical evidence for the back-transformation of stress-induced martensite in the vicinity of cracks in pseudoelastic NiTi shape memory alloys. Acta Mater 57(19):5892–5897CrossRef
Metadaten
Titel
Extending Fatigue Life of NiTiHf Shape Memory Alloy Wires Through Rapid Thermal Annealing
verfasst von
Faith Gantz
Michael T. Wall
Marcus L. Young
Drew J. Forbes
Publikationsdatum
06.12.2022
Verlag
Springer US
Erschienen in
Shape Memory and Superelasticity / Ausgabe 4/2022
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-022-00404-y

Weitere Artikel der Ausgabe 4/2022

Shape Memory and Superelasticity 4/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.