Skip to main content
Erschienen in: Fluid Dynamics 4/2022

01.08.2022

Plane and Axisymmetric Bodies in a Flow with the Greatest “Critical” Mach Number

verfasst von: A. N. Kraiko, V. A. Shapovalov

Erschienen in: Fluid Dynamics | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We construct two-dimensional (plane and axisymmetric) bodies in a flow of an ideal (inviscid and non-heat-conducting) gas with the greatest “critical” Mach number М* under certain additional restrictions. If the freestream Mach number М0 < М*, then in the entire flow, including the surfaces, М < 1, shock waves are absent, and, as a consequence, the wave drag is zero. At М0 = М* the equality М = 1 is fulfilled at least at one point in the flow, while at М0 > М* there appear supersonic zones, generally, with the formation of shock waves and the wave drag increasing with increase in М0. It is known that maximum critical Mach numbers М* are realized by two-dimensional configurations such that, when being in a flow with М0 = М*, their contours are partly segments of sonic lines. The trivial examples of such configurations are furnished by a flat plate at zero incidence and a segment of a straight line (“axisymmetric needle”) in a uniform flow with М ≡ М0 ≡ М* ≡ 1; these configurations do not disturb the flow. The area of their longitudinal section divided by the square of a fixed chord S = 0. If, in addition to the chord length, we preassign an area S > 0, then the critical contours of these bodies consist of the forward and rear faces and the upper and symmetric lower sonic streamlines connecting the faces without bends. As S → 0, the face heights tend to zero, while М0 and М* tend to unity, so that we arrive at the trivial solutions. In order to avoid at S > 0 the almost inevitable separations behind the bodies constructed in the assumption of separationless flow, the restrictions on the angles of inclination of the contours of their rear parts are introduced. As a result, the rear faces are replaced by inclined rectilinear segments and a plane critical configuration becomes a symmetric wing airfoil. Although the structure of the two-dimensional critical configurations is in principle simple, the available methods of their construction are rather complicated. The numerical “tools” applied in this study turned out simpler. They are based on the genetic algorithm of “direct” optimization with the representation of the unknown segments of sonic streamlines by the Bernstein—Bézier curves, together with the integration of the equations of ideal gas flow by means of the modified, higher-order (on smooth solutions) Godunov scheme and the procedure of steady solution attainment. Earlier, these tools were developed and applied by the authors in constructing a wide range of optimal aerodynamic shapes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gilbarg, D. and Shiffman, M., On bodies achieving extreme values of the critical Mach number. I, J. Ration. Mech. Analysis, 1954, vol. 3, no. 2, pp. 209–230.MathSciNetMATH Gilbarg, D. and Shiffman, M., On bodies achieving extreme values of the critical Mach number. I, J. Ration. Mech. Analysis, 1954, vol. 3, no. 2, pp. 209–230.MathSciNetMATH
2.
Zurück zum Zitat Kraiko, A.N., Planar and axially symmetric configurations circumvented with the maximum critical Mach number, J. Appl. Math. Mech., 1987, vol. 51, no. 6, pp. 723–770.MathSciNetCrossRef Kraiko, A.N., Planar and axially symmetric configurations circumvented with the maximum critical Mach number, J. Appl. Math. Mech., 1987, vol. 51, no. 6, pp. 723–770.MathSciNetCrossRef
3.
Zurück zum Zitat Fisher, D.D., Calculation of subsonic cavities with sonic free streamlines, J. Math. Phys., 1963, vol. 42, no. 1, pp. 14–26.MathSciNetCrossRef Fisher, D.D., Calculation of subsonic cavities with sonic free streamlines, J. Math. Phys., 1963, vol. 42, no. 1, pp. 14–26.MathSciNetCrossRef
4.
Zurück zum Zitat Brutyan, M.A. and Lyapunov, S.V., Optimization of the shapes of symmetric plane bodies for the purpose of increasing the critical Mach number, Uch. Zap. TsAGI, 1981, vol. 12, no. 5, pp. 10–22. Brutyan, M.A. and Lyapunov, S.V., Optimization of the shapes of symmetric plane bodies for the purpose of increasing the critical Mach number, Uch. Zap. TsAGI, 1981, vol. 12, no. 5, pp. 10–22.
5.
Zurück zum Zitat Shcherbakov, S.A., Calculations of the nose or rear part of a plane body in a subsonic flow with the greatest possible critical Mach number, Uch. Zap. TsAGI, 1988, vol. 19, no. 4, pp. 10–18. Shcherbakov, S.A., Calculations of the nose or rear part of a plane body in a subsonic flow with the greatest possible critical Mach number, Uch. Zap. TsAGI, 1988, vol. 19, no. 4, pp. 10–18.
6.
Zurück zum Zitat Schwendeman, D.W., Kropinski, M.C.A., and Cole, J.D., On the construction and calculation of optimal nonlifting critical airfoils, ZAMP, 1993, vol. 44, pp. 556–571.ADSMathSciNetMATH Schwendeman, D.W., Kropinski, M.C.A., and Cole, J.D., On the construction and calculation of optimal nonlifting critical airfoils, ZAMP, 1993, vol. 44, pp. 556–571.ADSMathSciNetMATH
7.
Zurück zum Zitat Zigangareeva, L.M. and Kiselev, O.M., Calculation of the cavitating flow around a circular cone by a subsonic stream of a compressible fluid, J. Appl. Math. Mech., 1994, vol. 58, no. 4, pp. 669–684.MathSciNetCrossRef Zigangareeva, L.M. and Kiselev, O.M., Calculation of the cavitating flow around a circular cone by a subsonic stream of a compressible fluid, J. Appl. Math. Mech., 1994, vol. 58, no. 4, pp. 669–684.MathSciNetCrossRef
8.
Zurück zum Zitat Zigangareeva, L.M. and Kiselev, O.M., Separated inviscid gas flow past a disk and a body with maximum critical Mach numbers, Fluid Dyn., 1996, vol. 31, no. 3, pp. 477–482.ADSCrossRef Zigangareeva, L.M. and Kiselev, O.M., Separated inviscid gas flow past a disk and a body with maximum critical Mach numbers, Fluid Dyn., 1996, vol. 31, no. 3, pp. 477–482.ADSCrossRef
9.
Zurück zum Zitat Zigangareeva, L.M. and Kiselev, O.M., Maximum critical Mach number flows around semi-infinite solids of revolution, J. Appl. Math. Mech., 1997, vol. 61, no. 1, pp. 93–102.MathSciNetCrossRef Zigangareeva, L.M. and Kiselev, O.M., Maximum critical Mach number flows around semi-infinite solids of revolution, J. Appl. Math. Mech., 1997, vol. 61, no. 1, pp. 93–102.MathSciNetCrossRef
10.
Zurück zum Zitat Zigangareeva, L.M. and Kiselev, O.M., Plane configurations in a flow of a perfect gas with a maximum critical Mach number, J. Appl. Mech. Techn. Phys., 1998, vol. 39, no. 5, pp. 744–752.ADSCrossRef Zigangareeva, L.M. and Kiselev, O.M., Plane configurations in a flow of a perfect gas with a maximum critical Mach number, J. Appl. Mech. Techn. Phys., 1998, vol. 39, no. 5, pp. 744–752.ADSCrossRef
11.
Zurück zum Zitat Kraiko, A.N. and Tillyaeva, N.I., On the curvature of boundary streamlines in ideal gas flows at separation and reattachment points, Prikl. Mat. Mekh., 2022, vol. 96, no. 3. Kraiko, A.N. and Tillyaeva, N.I., On the curvature of boundary streamlines in ideal gas flows at separation and reattachment points, Prikl. Mat. Mekh., 2022, vol. 96, no. 3.
12.
Zurück zum Zitat Kraiko, A.N., Teoreticheskaya gazovaya dinamika: klassika i sovremennost’ (Theoretical Gas Dynamics: Classics and the Present Day), Moscow: Torus Press, 2010. Kraiko, A.N., Teoreticheskaya gazovaya dinamika: klassika i sovremennost’ (Theoretical Gas Dynamics: Classics and the Present Day), Moscow: Torus Press, 2010.
13.
Zurück zum Zitat P’yankov, K.S. and Tillyaeva, N.I., Multi-objective multidisciplinary design optimization of fan rotor blades on the basis of a genetic algorithm, Tekhn. Vozd. Flota, 2010, no. 3, pp. 58–67. P’yankov, K.S. and Tillyaeva, N.I., Multi-objective multidisciplinary design optimization of fan rotor blades on the basis of a genetic algorithm, Tekhn. Vozd. Flota, 2010, no. 3, pp. 58–67.
14.
Zurück zum Zitat Kraiko, A.A., P’yankov, K.S., Tillyaeva, N.I., and Toporkov, M.N., Optimization of a birotative fan with account for the stress-strain state on the basis of a genetic algorithm, Tekhn. Vozd. Flota, 2014, no. 1, pp. 22–34. Kraiko, A.A., P’yankov, K.S., Tillyaeva, N.I., and Toporkov, M.N., Optimization of a birotative fan with account for the stress-strain state on the basis of a genetic algorithm, Tekhn. Vozd. Flota, 2014, no. 1, pp. 22–34.
15.
Zurück zum Zitat Kraiko, A.A., P’yankov, K.S., and Tillyaeva, N.I., Contouring two-sided asymmetric plane maximum-thrust nozzles, Fluid Dyn., 2016, vol. 51, no. 1, pp. 120–125.ADSMathSciNetCrossRef Kraiko, A.A., P’yankov, K.S., and Tillyaeva, N.I., Contouring two-sided asymmetric plane maximum-thrust nozzles, Fluid Dyn., 2016, vol. 51, no. 1, pp. 120–125.ADSMathSciNetCrossRef
16.
Zurück zum Zitat Tillyaeva, N.I., Comparison of the effectiveness of spike and combined annular nozzles, Fluid Dyn., 2017, vol. 52, no. 4, pp. 587–598.ADSCrossRef Tillyaeva, N.I., Comparison of the effectiveness of spike and combined annular nozzles, Fluid Dyn., 2017, vol. 52, no. 4, pp. 587–598.ADSCrossRef
17.
Zurück zum Zitat Kraiko, A.A., P’yankov, K.S., Tillyaeva, N.I., and Shapovalov, V.A., Internal shocks in supersonic flows past the contours of optimal nozzles and bodies, Fluid Dyn., 2020, vol. 55, no. 6, pp. 840–857.ADSMathSciNetCrossRef Kraiko, A.A., P’yankov, K.S., Tillyaeva, N.I., and Shapovalov, V.A., Internal shocks in supersonic flows past the contours of optimal nozzles and bodies, Fluid Dyn., 2020, vol. 55, no. 6, pp. 840–857.ADSMathSciNetCrossRef
18.
Zurück zum Zitat Godunov, S.K., Zabrodin, A.V., Ivanov, M.Ya., Kraiko, A.N., and Prokopov, G.P., Chislennoe reshenie mnogomernykh zadach gazovoy dinamiki (Numerical Solution of Multidimensional Problems of Gasdynamics), Moscow: Nauka, 1976. Godunov, S.K., Zabrodin, A.V., Ivanov, M.Ya., Kraiko, A.N., and Prokopov, G.P., Chislennoe reshenie mnogomernykh zadach gazovoy dinamiki (Numerical Solution of Multidimensional Problems of Gasdynamics), Moscow: Nauka, 1976.
19.
Zurück zum Zitat Kolgan, V.P., Application of the principle of minimum values of the derivative to the construction of finite-difference schemes for calculating discontinuous solutions of gas dynamics, Uch. Zap. TsAGI, 1972, vol. 3, no. 6, pp. 68–77 [see also J. Comput. Phys., 2011, vol. 230, pp. 2384–2390]. Kolgan, V.P., Application of the principle of minimum values of the derivative to the construction of finite-difference schemes for calculating discontinuous solutions of gas dynamics, Uch. Zap. TsAGI, 1972, vol. 3, no. 6, pp. 68–77 [see also J. Comput. Phys., 2011, vol. 230, pp. 2384–2390].
20.
Zurück zum Zitat Tillyaeva, N.I., Generalization of the modified Godunov scheme on arbitrary irregular grids, Uch. Zap. TsAGI, 1986, vol. 17, no. 2, pp. 18–26 [see also in: Gazovaya dinamika. Izbrannoe. T. 2 (Gas Dynamics. Selected Works. Vol. 2), Ed. by A. Kraiko, A. Vatazhin, and A. Sekundov, Moscow: Fizmatlit, 2005, pp. 201–210]. Tillyaeva, N.I., Generalization of the modified Godunov scheme on arbitrary irregular grids, Uch. Zap. TsAGI, 1986, vol. 17, no. 2, pp. 18–26 [see also in: Gazovaya dinamika. Izbrannoe. T. 2 (Gas Dynamics. Selected Works. Vol. 2), Ed. by A. Kraiko, A. Vatazhin, and A. Sekundov, Moscow: Fizmatlit, 2005, pp. 201–210].
21.
Zurück zum Zitat Grin’, V.T., Kraiko A.N., and Slavyanov N.N., Solution to the problem of starting a nozzle mounted at the end of a shock tube, Fluid Dyn., 1981, vol. 16, no. 6, pp. 903–910. Grin’, V.T., Kraiko A.N., and Slavyanov N.N., Solution to the problem of starting a nozzle mounted at the end of a shock tube, Fluid Dyn., 1981, vol. 16, no. 6, pp. 903–910.
22.
Zurück zum Zitat Brailko, I.A. and Popov, E.N., Calculations of steady two- and three-dimensional viscous flows in blade channels of turbines, in Trudy NPO Energomash im. Akad. V.P. Glushko (Proc. of Glushko Scientific-Production Association “Energomash”), 2002, no. 20, pp. 4–22. Brailko, I.A. and Popov, E.N., Calculations of steady two- and three-dimensional viscous flows in blade channels of turbines, in Trudy NPO Energomash im. Akad. V.P. Glushko (Proc. of Glushko Scientific-Production Association “Energomash”), 2002, no. 20, pp. 4–22.
23.
Zurück zum Zitat Mazurov A.P. and Takovitskii, S.A., Nose part of the body of revolution having minimum aerodynamic drag in the range of large subsonic velocities, Fluid Dyn., 2022, vol. 57, no. 1, pp. 86–95.ADSMathSciNetCrossRef Mazurov A.P. and Takovitskii, S.A., Nose part of the body of revolution having minimum aerodynamic drag in the range of large subsonic velocities, Fluid Dyn., 2022, vol. 57, no. 1, pp. 86–95.ADSMathSciNetCrossRef
Metadaten
Titel
Plane and Axisymmetric Bodies in a Flow with the Greatest “Critical” Mach Number
verfasst von
A. N. Kraiko
V. A. Shapovalov
Publikationsdatum
01.08.2022
Verlag
Pleiades Publishing
Erschienen in
Fluid Dynamics / Ausgabe 4/2022
Print ISSN: 0015-4628
Elektronische ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462822040073

Weitere Artikel der Ausgabe 4/2022

Fluid Dynamics 4/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.