Skip to main content
Erschienen in: Fluid Dynamics 7/2022

01.12.2022

On the Curvature of Boundary Streamlines of an Ideal Gas at Separation and Reattachment Points

verfasst von: A. N. Kraiko, N. I. Tillyayeva

Erschienen in: Fluid Dynamics | Ausgabe 7/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper considers the stationary flows of an ideal (nonviscous and nonheat-conducting) gas with streamlines, i.e., boundaries of flowing and stationary media. In the 19th century such boundaries appeared in the problems of the outflow of jets into a flooded space. Until 1903 only jets of incompressible fluid were considered; the main contribution was made by Zhukovsky. In 1903 Chaplygin began studying flat subsonic jets of an ideal gas. In 1949 Ovsyannikov, having solved the problem of the outflow of a “critical” jet, discovered the fascinating properties of a flow with a sonic boundary streamline. Soon, segments of such streamlines, which arose mostly in problems of jet-flow theory, appeared in the construction of bodies subjected to subsonic flows with the largest “critical” Mach numbers M*. For an incident flow with M0 < M* M < 1 in the entire flow, there are no shock waves and wave drag. At M0 > M* supersonic zones appear, shock waves arise as well as wave drag, increasing with increasing M0. It turned out that M* is achieved by bodies subject to a flow in which with M0 = M* some of the contours are segments of sonic streamlines. It is useful to know their curvature at the separation and reattachment points. Zhukovsky states it to be infinite for a fluid at separation points. The infinity of the curvature of such streamlines in an ideal gas has been established only after 100 years. The following shows how the flow parameters and their derivatives, including the curvature of the streamlines, behave when approaching separation and reattachment points. The curvature of the boundary streamlines at these points is infinite, while the curvature of sonic streamlines when they intersect with a straight sonic transition line is zero.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhukovskii, N.E., Modification of the Kirchhoff method for determining the motion of a fluid in two dimensions at a constant velocity set on an unknown stream line, in Sobranie sochinenii (Collection of Scientific Papers), vol. 2: Gidrodinamika (Hydrodynamics), Zhukovskii, N.E., Ed., Moscow, Leningrad: Gostekhizdat, 1949, pp. 489–626. Zhukovskii, N.E., Modification of the Kirchhoff method for determining the motion of a fluid in two dimensions at a constant velocity set on an unknown stream line, in Sobranie sochinenii (Collection of Scientific Papers), vol. 2: Gidrodinamika (Hydrodynamics), Zhukovskii, N.E., Ed., Moscow, Leningrad: Gostekhizdat, 1949, pp. 489–626.
2.
Zurück zum Zitat Zhukovskii, N.E.,The way to determine fluid motion under some condition given on the stream line, in Sobranie sochinenii (Collection of Scientific Papers), vol. 2: Gidrodinamika (Hydrodynamics), Zhukovskii, N.E., Ed., Moscow, Leningrad: Gostekhizdat, 1949, pp. 640–653. Zhukovskii, N.E.,The way to determine fluid motion under some condition given on the stream line, in Sobranie sochinenii (Collection of Scientific Papers), vol. 2: Gidrodinamika (Hydrodynamics), Zhukovskii, N.E., Ed., Moscow, Leningrad: Gostekhizdat, 1949, pp. 640–653.
3.
Zurück zum Zitat Imai, I., Discontinuous potential flow as the limiting form of the viscous flow for vanishing viscosity, J. Phys. Soc. Jpn., 1953, vol. 8, no. 3, pp. 399–402.ADSMathSciNetCrossRef Imai, I., Discontinuous potential flow as the limiting form of the viscous flow for vanishing viscosity, J. Phys. Soc. Jpn., 1953, vol. 8, no. 3, pp. 399–402.ADSMathSciNetCrossRef
4.
Zurück zum Zitat Betyaev, S.K., The evolution of vortex sheets, in Dinamika sploshnoi sredy so svobodnymi poverkhnostyami (Dynamics of a Continuous Medium with Free Surfaces), Cheboksary: Chuvash. State Univ., 1980, pp. 27–38. Betyaev, S.K., The evolution of vortex sheets, in Dinamika sploshnoi sredy so svobodnymi poverkhnostyami (Dynamics of a Continuous Medium with Free Surfaces), Cheboksary: Chuvash. State Univ., 1980, pp. 27–38.
5.
Zurück zum Zitat Sychev, V.V., Ruban, A.I., Sychev, Vik.V., et al., Asimptoticheskaya teoriya otryvnykh techenii (Asymptotic Theory of Detached Flows), Moscow: Nauka, 1987. Sychev, V.V., Ruban, A.I., Sychev, Vik.V., et al., Asimptoticheskaya teoriya otryvnykh techenii (Asymptotic Theory of Detached Flows), Moscow: Nauka, 1987.
6.
Zurück zum Zitat Ovsyannikov, L.V., On a gas flow with a straight transition line, Prikl. Mat. Mekh., 1949, vol. 13, no. 5, pp. 537–542.MathSciNet Ovsyannikov, L.V., On a gas flow with a straight transition line, Prikl. Mat. Mekh., 1949, vol. 13, no. 5, pp. 537–542.MathSciNet
7.
Zurück zum Zitat Ovsyannikov, L.V., Study of gas flows with a straight sonic line, Tr. Leningrad. Krasnoznamen. Voen.-Vozdushn. Inzh. Akad., 1950, no. 33, pp. 3–24. Ovsyannikov, L.V., Study of gas flows with a straight sonic line, Tr. Leningrad. Krasnoznamen. Voen.-Vozdushn. Inzh. Akad., 1950, no. 33, pp. 3–24.
8.
Zurück zum Zitat Shifrin, E.G., On the sonic flow over an infinite wedge, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, 1969, no. 2, pp. 103–106. Shifrin, E.G., On the sonic flow over an infinite wedge, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, 1969, no. 2, pp. 103–106.
9.
Zurück zum Zitat Kraiko, A.N. and Munin, S.A., On sonic flows impinging on wedge-shaped obstructions, J. Appl. Math. Mech., 1989, vol. 53, no. 3, pp. 315–319.CrossRefMATH Kraiko, A.N. and Munin, S.A., On sonic flows impinging on wedge-shaped obstructions, J. Appl. Math. Mech., 1989, vol. 53, no. 3, pp. 315–319.CrossRefMATH
10.
Zurück zum Zitat Katskova, O.N. and Shmyglevskii, Yu.D., Axisymmetric supersonic flow of a freely expanding gas with a flat transition surface, Vychisl. Mat., 1957, no. 2, pp. 45–89. Katskova, O.N. and Shmyglevskii, Yu.D., Axisymmetric supersonic flow of a freely expanding gas with a flat transition surface, Vychisl. Mat., 1957, no. 2, pp. 45–89.
11.
Zurück zum Zitat Kraiko, A.N. and Tillyaeva, N.I., The method of characteristics and semi-characteristic variables in problems of profiling supersonic parts of axisymmetric and plane nozzles, Comput. Math. Math. Phys., 1996, vol. 36, no. 9, pp. 1299–1312.MATH Kraiko, A.N. and Tillyaeva, N.I., The method of characteristics and semi-characteristic variables in problems of profiling supersonic parts of axisymmetric and plane nozzles, Comput. Math. Math. Phys., 1996, vol. 36, no. 9, pp. 1299–1312.MATH
12.
Zurück zum Zitat Kraiko, A.N., Tillyaeva, N.I., and Shamardina, T.V., Plane-parallel and axisymmetric flows with a straight sonic line, Comput. Math. Math. Phys., 2019, vol. 59, no. 4, pp. 610–629.MathSciNetCrossRefMATH Kraiko, A.N., Tillyaeva, N.I., and Shamardina, T.V., Plane-parallel and axisymmetric flows with a straight sonic line, Comput. Math. Math. Phys., 2019, vol. 59, no. 4, pp. 610–629.MathSciNetCrossRefMATH
13.
Zurück zum Zitat Kraiko, A.N., The limiting properties of piecewise-potential subcritical and critical jet of an ideal gas, J. Appl. Math. Mech., 2003, vol. 67, no. 1, pp. 25–35.MathSciNetCrossRefMATH Kraiko, A.N., The limiting properties of piecewise-potential subcritical and critical jet of an ideal gas, J. Appl. Math. Mech., 2003, vol. 67, no. 1, pp. 25–35.MathSciNetCrossRefMATH
14.
Zurück zum Zitat Kraiko, A.N., Teoreticheskaya gazovaya dinamika: klassika i sovremennost’ (Theoretical Gas Dynamics: Today and Classic), Moscow: Torus press, 2010. Kraiko, A.N., Teoreticheskaya gazovaya dinamika: klassika i sovremennost’ (Theoretical Gas Dynamics: Today and Classic), Moscow: Torus press, 2010.
15.
Zurück zum Zitat Gilbarg, D. and Shiffman, M., On bodies achieving extreme values of the critical mach number. I, J. Ration. Mech. Anal., 1954, vol. 3, no. 2, pp. 209–230.MathSciNetMATH Gilbarg, D. and Shiffman, M., On bodies achieving extreme values of the critical mach number. I, J. Ration. Mech. Anal., 1954, vol. 3, no. 2, pp. 209–230.MathSciNetMATH
16.
Zurück zum Zitat Kraiko, A.N., Planar and axially symmetric configurations which are circumvented with the maximum critical Mach number, J. Appl. Math. Mech., 1987, vol. 51, no. 6, pp. 723–730.MathSciNetCrossRefMATH Kraiko, A.N., Planar and axially symmetric configurations which are circumvented with the maximum critical Mach number, J. Appl. Math. Mech., 1987, vol. 51, no. 6, pp. 723–730.MathSciNetCrossRefMATH
17.
Zurück zum Zitat Fisher, D.D., Calculation of subsonic cavities with sonic free streamlines, J. Math. Phys., 1963, vol. 42, no. 1, pp. 14–26.MathSciNetCrossRefMATH Fisher, D.D., Calculation of subsonic cavities with sonic free streamlines, J. Math. Phys., 1963, vol. 42, no. 1, pp. 14–26.MathSciNetCrossRefMATH
18.
Zurück zum Zitat Brutyan, M.A. and Lyapunov, S.V., The way to optimize the symmetrical two-dimensional bodies shape in order to increase the critical Mach number, Uch. Zap. TsAGI, 1981, vol. 12, no. 5, pp. 10–22. Brutyan, M.A. and Lyapunov, S.V., The way to optimize the symmetrical two-dimensional bodies shape in order to increase the critical Mach number, Uch. Zap. TsAGI, 1981, vol. 12, no. 5, pp. 10–22.
19.
Zurück zum Zitat Shcherbakov, S.A., The way to calculate the head or aft part of two-dimension body streamlined by subsonic flow with the maximum possible critical Mach number, Uch. Zap. TsAGI, 1988, vol. 19, no. 4, pp. 10–18. Shcherbakov, S.A., The way to calculate the head or aft part of two-dimension body streamlined by subsonic flow with the maximum possible critical Mach number, Uch. Zap. TsAGI, 1988, vol. 19, no. 4, pp. 10–18.
20.
Zurück zum Zitat Schwendeman, D.W., Kropinski, M.C.A., and Cole, J.D., On the construction and calculation of optimal nonlifting critical airfoils, Z. Angew. Math. Phys., 1993, vol. 44, pp. 556–571.MathSciNetCrossRefMATH Schwendeman, D.W., Kropinski, M.C.A., and Cole, J.D., On the construction and calculation of optimal nonlifting critical airfoils, Z. Angew. Math. Phys., 1993, vol. 44, pp. 556–571.MathSciNetCrossRefMATH
21.
Zurück zum Zitat Zigangareeva, L.M. and Kiselev, O.M., Calculation of the cavitating flow around a circular cone by a subsonic stream of a compressible fluid, J. Appl. Math. Mech., 1994, vol. 58, no. 4, pp. 669–684.MathSciNetCrossRefMATH Zigangareeva, L.M. and Kiselev, O.M., Calculation of the cavitating flow around a circular cone by a subsonic stream of a compressible fluid, J. Appl. Math. Mech., 1994, vol. 58, no. 4, pp. 669–684.MathSciNetCrossRefMATH
22.
Zurück zum Zitat Zigangareeva, L.M. and Kiselev, O.M., Separated inyiscid gas flow past a disk and a body with maximum critical Mach numbers, Fluid Dyn., 1996, vol. 31, no. 3, pp. 477–482.ADSCrossRef Zigangareeva, L.M. and Kiselev, O.M., Separated inyiscid gas flow past a disk and a body with maximum critical Mach numbers, Fluid Dyn., 1996, vol. 31, no. 3, pp. 477–482.ADSCrossRef
23.
Zurück zum Zitat Zigangareeva, L.M. and Kiselev, O.M., Maximum critical Mach number flows around semi-infinite solids of revolution, J. Appl. Math. Mech., 1997, vol. 61, no. 1, pp. 93–102.MathSciNetCrossRefMATH Zigangareeva, L.M. and Kiselev, O.M., Maximum critical Mach number flows around semi-infinite solids of revolution, J. Appl. Math. Mech., 1997, vol. 61, no. 1, pp. 93–102.MathSciNetCrossRefMATH
24.
Zurück zum Zitat Zigangareeva, L.M. and Kiselev, O.M., Plane configurations in a flow of a perfect gas with a maximum critical Mach number, J. Appl. Mech. Tech. Phys., 1998, vol. 39, no. 5, pp. 744–752.ADSCrossRefMATH Zigangareeva, L.M. and Kiselev, O.M., Plane configurations in a flow of a perfect gas with a maximum critical Mach number, J. Appl. Mech. Tech. Phys., 1998, vol. 39, no. 5, pp. 744–752.ADSCrossRefMATH
25.
Zurück zum Zitat Von Kamke, E., Differentialgleichungen Lösungsmethoden und Lösungen. Gewöhnliche Differentialgleichungen, Leipzig: 1959. Von Kamke, E., Differentialgleichungen Lösungsmethoden und Lösungen. Gewöhnliche Differentialgleichungen, Leipzig: 1959.
Metadaten
Titel
On the Curvature of Boundary Streamlines of an Ideal Gas at Separation and Reattachment Points
verfasst von
A. N. Kraiko
N. I. Tillyayeva
Publikationsdatum
01.12.2022
Verlag
Pleiades Publishing
Erschienen in
Fluid Dynamics / Ausgabe 7/2022
Print ISSN: 0015-4628
Elektronische ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462822070072

Weitere Artikel der Ausgabe 7/2022

Fluid Dynamics 7/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.