Skip to main content
Erschienen in: Physics of Metals and Metallography 2/2019

01.02.2019 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Relationship between Structure, Phase Composition, and Physicomechanical Properties of Quenched Ti–Nb Alloys

verfasst von: A. G. Illarionov, S. V. Grib, S. M. Illarionova, A. A. Popov

Erschienen in: Physics of Metals and Metallography | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Transmission electron microscopy, X-ray diffraction analysis, and microindentation were used to study the changes in the structure, phase composition, elastic modulus, and hardness of the Ti–(9.6–34) at % Nb alloys after quenching in water from heating temperatures corresponding to the β region. The relationship between the physicomechanical properties (elastic modulus, microhardness) and the volume fraction of metastable phases detected in Ti–Nb alloys after quenching from the β region has been shown. It has been noted that the Ti–13.3 at % Nb alloy with a structure in which the ω phase with anomalous morphology in the form of massive plates is formed after quenching is characterized by maximum values of elastic modulus and microdurometric characteristics. The growth of the elastic modulus of the metastable β solid solution with increasing niobium content in alloys with a decrease in the average distance between the niobium–niobium atoms in the bcc structure has been justified. The possibility for calculating the elastic modulus of quenched Ti–Nb alloys based on the additive contributions of the elastic moduli of phases detected after quenching, which are proportional to their volume fractions has been considered.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T. Ozaki, H. Matsumoto, S. Watanabe, and S. Hanada, “Beta Ti alloys with low Young’s modulus,” Mater. Trans. 45, 2776–2779 (2004).CrossRef T. Ozaki, H. Matsumoto, S. Watanabe, and S. Hanada, “Beta Ti alloys with low Young’s modulus,” Mater. Trans. 45, 2776–2779 (2004).CrossRef
2.
Zurück zum Zitat S. V. Grib, A. G. Illarionov, A. A. Popov, and O. M. Ivasishin, “Development and investigation of the structure and physical and mechanical properties of low-modulus Ti–Zr–Nb alloys,” Phys. Met. Metallogr. 115, 600–608 (2014).CrossRef S. V. Grib, A. G. Illarionov, A. A. Popov, and O. M. Ivasishin, “Development and investigation of the structure and physical and mechanical properties of low-modulus Ti–Zr–Nb alloys,” Phys. Met. Metallogr. 115, 600–608 (2014).CrossRef
3.
Zurück zum Zitat V. A. Sheremetyev, S. D. Prokoshkin, V. Brailovski, S. M. Dubinskiy, A. V. Korotitskiy, M. R. Filonov, and M. I. Petrzhik, Investigation of the structure stability and superelastic behavior of thermomechanically treated Ti–Nb–Zr and Ti–Nb–Ta shape-memory alloys, Phys. Met. Metallogr. 116, 413–442 (2015).CrossRef V. A. Sheremetyev, S. D. Prokoshkin, V. Brailovski, S. M. Dubinskiy, A. V. Korotitskiy, M. R. Filonov, and M. I. Petrzhik, Investigation of the structure stability and superelastic behavior of thermomechanically treated Ti–Nb–Zr and Ti–Nb–Ta shape-memory alloys, Phys. Met. Metallogr. 116, 413–442 (2015).CrossRef
4.
Zurück zum Zitat S. G. Fedotov and O. K. Belousov, “Elastic constants in titanium–niobium system,” Fiz. Met. Metalloved. 17, 732–736 (1964). S. G. Fedotov and O. K. Belousov, “Elastic constants in titanium–niobium system,” Fiz. Met. Metalloved. 17, 732–736 (1964).
5.
Zurück zum Zitat A. G. Illarionov, N. V. Shchetnikov, S. M. Illarionova and A. A. Popov, “Effect of heating temperature on the formation of structure and phase composition of a biocompatible alloy Ti–6AL–4V–ELI subjected to equal-channel angular pressing,” Phys. Met. Metallogr. 118, 272–278 (2017).CrossRef A. G. Illarionov, N. V. Shchetnikov, S. M. Illarionova and A. A. Popov, “Effect of heating temperature on the formation of structure and phase composition of a biocompatible alloy Ti–6AL–4V–ELI subjected to equal-channel angular pressing,” Phys. Met. Metallogr. 118, 272–278 (2017).CrossRef
6.
Zurück zum Zitat H. Matsumoto, S. Watanabe, N. Masahashi, and S. Hanada, “Composition dependence of Young’s modulus in Ti–V, Ti–Nb, and Ti–V–Sn alloys,” Metall. Mater. Trans. A 37, 3239–3249 (2006).CrossRef H. Matsumoto, S. Watanabe, N. Masahashi, and S. Hanada, “Composition dependence of Young’s modulus in Ti–V, Ti–Nb, and Ti–V–Sn alloys,” Metall. Mater. Trans. A 37, 3239–3249 (2006).CrossRef
7.
Zurück zum Zitat M. Bönisch, M. Calin, J. Humbeeck, W. Skrotzki, and J. Eckert, “Factors influencing the elastic moduli, reversible strains and hysteresis loops in martensitic Ti–Nb alloys,” Mater. Sci. Eng., C 48, 511–520 (2015).CrossRef M. Bönisch, M. Calin, J. Humbeeck, W. Skrotzki, and J. Eckert, “Factors influencing the elastic moduli, reversible strains and hysteresis loops in martensitic Ti–Nb alloys,” Mater. Sci. Eng., C 48, 511–520 (2015).CrossRef
8.
Zurück zum Zitat S. G. Fedotov and O. K. Belousov, “Elastic properties of alloys of titanium with molybdenum, vanadium, and niobium,” Sov. Ohys. Dokl. 8, 496–498 (1964). S. G. Fedotov and O. K. Belousov, “Elastic properties of alloys of titanium with molybdenum, vanadium, and niobium,” Sov. Ohys. Dokl. 8, 496–498 (1964).
9.
Zurück zum Zitat S. G. Fedotov and O. K. Belousov, “Elastic properties of multi-component titanium alloys with molybdenum,vanadium and niobium,” Dokl. Akad. Nauk SSSR 155, 1387–1390 (1964). S. G. Fedotov and O. K. Belousov, “Elastic properties of multi-component titanium alloys with molybdenum,vanadium and niobium,” Dokl. Akad. Nauk SSSR 155, 1387–1390 (1964).
10.
Zurück zum Zitat C. M. Lee, C. F. Ju, and J. H. Chern Lin, “Structure–property relations of cast Ti–Nb alloys,” J. Oral Rehabil. 29, 314–322 (2002).CrossRef C. M. Lee, C. F. Ju, and J. H. Chern Lin, “Structure–property relations of cast Ti–Nb alloys,” J. Oral Rehabil. 29, 314–322 (2002).CrossRef
11.
Zurück zum Zitat H. Ikehata, N. Nagasako, T. Furuta, A. Fukumoto, K. Miwa, and T. Saito, “First-principles calculations for development of low elastic modulus Ti alloys,” Phys. Rev. B 70, 174113 (2004).CrossRef H. Ikehata, N. Nagasako, T. Furuta, A. Fukumoto, K. Miwa, and T. Saito, “First-principles calculations for development of low elastic modulus Ti alloys,” Phys. Rev. B 70, 174113 (2004).CrossRef
12.
Zurück zum Zitat J. Sun, Q. Yao, H. Xing, and W. Y. Guo, “Elastic properties of β, α” and ω metastable phases in Ti–Nb alloy from first-principles,” J. Phys.: Condens. Matter 19, 486215 (2007). J. Sun, Q. Yao, H. Xing, and W. Y. Guo, “Elastic properties of β, α” and ω metastable phases in Ti–Nb alloy from first-principles,” J. Phys.: Condens. Matter 19, 486215 (2007).
13.
Zurück zum Zitat A. A. Popov, A. A. Il’in, A. G. Illarionov, O. A. Elkina, and M. Yu. Kollerov, “Study of phase transformations in quenched alloys of titanium–niobium system,” Fiz. Met. Metalloved. 78, 204–208 (1994). A. A. Popov, A. A. Il’in, A. G. Illarionov, O. A. Elkina, and M. Yu. Kollerov, “Study of phase transformations in quenched alloys of titanium–niobium system,” Fiz. Met. Metalloved. 78, 204–208 (1994).
14.
Zurück zum Zitat A. G. Illarionov, A. A. Popov, S. V. Grib, and O. A. Elkina, “Special features of formation of omega-phase in titanium alloys due to hardening,” Metal. Sci. Heat Treat. 52, 493–498 (2010).CrossRef A. G. Illarionov, A. A. Popov, S. V. Grib, and O. A. Elkina, “Special features of formation of omega-phase in titanium alloys due to hardening,” Metal. Sci. Heat Treat. 52, 493–498 (2010).CrossRef
15.
Zurück zum Zitat D. L. Moffat and D. C. Larbalestier, “The competition between martensite and omega in quenched Ti–Nb alloys,” Metall. Trans. A 19,1677–1686 (1988).CrossRef D. L. Moffat and D. C. Larbalestier, “The competition between martensite and omega in quenched Ti–Nb alloys,” Metall. Trans. A 19,1677–1686 (1988).CrossRef
16.
Zurück zum Zitat S. G. Fedotov, K. M. Konstantinov, R. G. Koknaev, and E. P. Sinodova, “Structure, properties and decomposition of martensite of titanium–niobium alloys,” in Titanium Alloys with Special Properties (Nauka, Moscow, 1982), pp. 29–33 [in Russian]. S. G. Fedotov, K. M. Konstantinov, R. G. Koknaev, and E. P. Sinodova, “Structure, properties and decomposition of martensite of titanium–niobium alloys,” in Titanium Alloys with Special Properties (Nauka, Moscow, 1982), pp. 29–33 [in Russian].
17.
Zurück zum Zitat G. Aurelio, A. F. Guillermet, G. J. Cuello, and J. Campo, “Metastable phases in the Ti–V system: Part I. Neutron diffraction study and assessment of structural properties,” Metall. Mater. Trans. A 33, 1307–1317 (2002).CrossRef G. Aurelio, A. F. Guillermet, G. J. Cuello, and J. Campo, “Metastable phases in the Ti–V system: Part I. Neutron diffraction study and assessment of structural properties,” Metall. Mater. Trans. A 33, 1307–1317 (2002).CrossRef
18.
Zurück zum Zitat R. Banerjee, P. C. Collins, D. Bhattacharyya, S. Banerjee, and H. Fraser, “Microstructural evolution in laser deposited compositionally graded α/β titanium–vanadium alloys,” Acta Mater. 51, 3277–3292 (2003).CrossRef R. Banerjee, P. C. Collins, D. Bhattacharyya, S. Banerjee, and H. Fraser, “Microstructural evolution in laser deposited compositionally graded α/β titanium–vanadium alloys,” Acta Mater. 51, 3277–3292 (2003).CrossRef
19.
Zurück zum Zitat Y. Guo, K. Georgarakis, Y. Yokoyama, and A. R. Yavari, “On the mechanical properties of TiNb based alloys,” J. Alloys Compd. 571, 25–30 (2013).CrossRef Y. Guo, K. Georgarakis, Y. Yokoyama, and A. R. Yavari, “On the mechanical properties of TiNb based alloys,” J. Alloys Compd. 571, 25–30 (2013).CrossRef
20.
Zurück zum Zitat Y. Mantani and M. Tajima, “Effect of ageing on internal friction and elastic modulus of Ti–Nb alloys,” Mater. Sci. Eng., A 442, 409–413 (2006).CrossRef Y. Mantani and M. Tajima, “Effect of ageing on internal friction and elastic modulus of Ti–Nb alloys,” Mater. Sci. Eng., A 442, 409–413 (2006).CrossRef
21.
Zurück zum Zitat S. Hanada, T. Ozaki, E. Takahashi, S. Watanabe, K. Yoshimi, and T. Abuyima, “Composition dependence of Young’s modulus in beta titanium binary alloys,” Mater. Sci. Forum 426–432, 3103–3108 (2003). S. Hanada, T. Ozaki, E. Takahashi, S. Watanabe, K. Yoshimi, and T. Abuyima, “Composition dependence of Young’s modulus in beta titanium binary alloys,” Mater. Sci. Forum 426–432, 3103–3108 (2003).
22.
Zurück zum Zitat G. T. Aleixo, C. R. M. Afonso, A. A. Coelho, and R. Caram, “Effects of omega phase on elastic modulus of Ti–Nb alloys as a function of composition and cooling rate,” Solid State Phenom. 138, 393–398 (2008).CrossRef G. T. Aleixo, C. R. M. Afonso, A. A. Coelho, and R. Caram, “Effects of omega phase on elastic modulus of Ti–Nb alloys as a function of composition and cooling rate,” Solid State Phenom. 138, 393–398 (2008).CrossRef
23.
Zurück zum Zitat M. A. Shtremel’, Strength of Alloys. Ch. I. Defects of Lattice (Metallurgiya, Moscow, 1982) [in Russian]. M. A. Shtremel’, Strength of Alloys. Ch. I. Defects of Lattice (Metallurgiya, Moscow, 1982) [in Russian].
24.
Zurück zum Zitat B. N. Arzamasov, V. I. Makarov, G. G. Mukhin, et al., Materials Science, Ed. by B. N. Arzamasov and G. G. Mukhin (Izd-vo MGTU im. N.E. Baumana, Moscow, 2001) [in Russian]. B. N. Arzamasov, V. I. Makarov, G. G. Mukhin, et al., Materials Science, Ed. by B. N. Arzamasov and G. G. Mukhin (Izd-vo MGTU im. N.E. Baumana, Moscow, 2001) [in Russian].
Metadaten
Titel
Relationship between Structure, Phase Composition, and Physicomechanical Properties of Quenched Ti–Nb Alloys
verfasst von
A. G. Illarionov
S. V. Grib
S. M. Illarionova
A. A. Popov
Publikationsdatum
01.02.2019
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 2/2019
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X19020054

Weitere Artikel der Ausgabe 2/2019

Physics of Metals and Metallography 2/2019 Zur Ausgabe